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A Appendix

A.1 Additional Ablation Results

Table A.1 is the ViT-B counterpart of Table 2 on backbone adaptation. The
observations are similar to that of ViT-L: comparing with the baseline using no
propagation (“none”), various propagation strategies show good gains.

Table A.2 presents Table 5 with additional details about FLOPs, parameters,
and inference time, plotted in Figure 3.

Table A.3 is the ablation on pre-training strategies for LVIS. Similar to Ta-
ble 4, MAE pre-training has large gains over supervised pre-training.

Figure A.1 is the LVIS counterpart of Figure 3. The trends are similar to those
in COCO, while the gain of IN-21K supervised pre-training is larger because it
significantly improves rare category detection in LVIS.

Figure A.2 is the RetinaNet [14] counterpart of Figure 3, showing the trade-off
between accuracy and model size. Here, we evaluate ViTDet with a one-stage
RetinaNet [14] detector head and compare it to using Swin and MViTv2 as
hierarchical backbones, all without hyper-parameter tuning. Compared to using
Mask R-CNN and Cascade R-CNN (Table 5 and Figure 3), we observe similar
trends with RetinaNet. In particular, our plain-backbone detector presents better
scaling behavior (e.g . ViT-H gains +3.4 APbox over MViTv2-H). These results
suggest that the proposed training recipe transfers well to different detectors and
that our proposed plain backbone adaptations are general and can likely work
with even more detection architectures.

A.2 Implementation Details

Architectures. We build a simple feature pyramid of scales { 1
32 ,

1
16 ,

1
8 ,

1
4} (see

Sec. 3). The 1
32 scale is built by stride-2 2×2 max pooling (average pooling or

convolution works similarly). The 1
16 scale simply uses the ViT’s final feature

map. Scale 1
8 (or 1

4 ) is built by one (or two) 2×2 deconvolution layer(s) with
stride=2. In the 1

4 scale case, the first deconvolution is followed by LayerNorm
(LN) [1] and GeLU [12]. Then for each pyramid level, we apply a 1×1 convolution
with LN to reduce dimension to 256 and then a 3×3 convolution also with LN,
similar to the per-level processing of FPN [13].

We study three detection frameworks: Mask R-CNN [11], Cascade Mask R-
CNN [3] and RetinaNet [14]. For Mask R-CNN and Cascade Mask R-CNN,
we incorporate some common best practices developed since they [11,3] were
presented years ago. We use 2 hidden convolution layers for the RPN and 4
hidden convolution layers for the RoI heads as per [16]. These hidden convolution
layers are followed by LN. For all three detection frameworks, We use the same
detection implementation for both plain and hierarchical backbones.

We use a patch size of 16 for all ViT backbones. As ViT-H in [6] by default
has a patch size of 14, after pre-training we interpolate the patch embedding
filters from 14×14×3 to 16×16×3.
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prop. strategy APbox APmask

none 48.9 43.9
4 global blocks 51.2 (+2.3) 45.5 (+1.6)
4 conv blocks 51.0 (+2.1) 45.3 (+1.4)
shifted win. 50.1 (+1.2) 44.8 (+0.9)

(a) Window attention with various cross-
window propagation strategies.

prop. conv APbox APmask

none 48.9 43.9
naı̈ve 50.6 (+1.7) 45.2 (+1.3)
basic 50.7 (+1.8) 45.2 (+1.3)
bottleneck 51.0 (+2.1) 45.3 (+1.4)

(b) Convolutional propagation with dif-
ferent residual block types (4 blocks).

prop. locations APbox APmask

none 48.9 43.9
first 4 blocks 49.1 (+0.2) 44.1 (+0.2)
last 4 blocks 50.9 (+2.0) 45.4 (+1.5)
evenly 4 blocks 51.2 (+2.3) 45.5 (+1.6)

(c) Locations of cross-window global
propagation blocks.

prop. blks APbox APmask

none 48.9 43.9
2 50.7 (+1.8) 45.2 (+1.3)
4 51.2 (+2.3) 45.5 (+1.6)
12 50.4 (+1.5) 45.1 (+1.2)

(d) Number of global propagation blocks.

Table A.1: The ViT-B counterpart of Table 2 (backbone adaptation).

Hyper-parameters for COCO. Our default training recipe is as follows (un-
less noted in context for ablation). The input size is 1024×1024, augmented
during training by large-scale jitter [7] with a scale range of [0.1, 2.0]. We use
AdamW [15] (β1, β2=0.9, 0.999) with step-wise learning rate decay. We use lin-
ear learning rate warm-up [8] for 250 iterations. The batch size is 64, distributed
across 64 GPUs (1 image per GPU).

We search for the learning rate (lr), weight decay (wd), drop path rate (dp),
and epochs, for each model size (B, L, H) and for each model type (ViT, Swin,
MViTv2). The hyper-parameters used are in Table A.4. We also use a layer-wise
lr decay [4][2] of 0.7/0.8/0.9 for ViT-B/L/H with MAE pre-training, which has a
small gain of up to 0.3 AP; we have not seen this gain for hierarchical backbones
or ViT with supervised pre-training.

Hyper-parameters for LVIS. Our LVIS experiments in Table 7 follow the
COCO settings in Table 5. For LVIS, we set lr = 2e−4/1e−4 (ViT-L/H), wd =
0.1, and dp = 0.4. We fine-tune for 100 epochs. We use a test score threshold
of 0.02 (smaller values did not help) and repeat factor sampling (t = 0.001) [9].
We output ≤ 300 detections per image following [9] (vs. COCO’s default 100).

MAE for hierarchical backbones. We implement a näıve extension of MAE
pre-training [10] for the hierarchical backbone ablation (Sec. 4.2). MAE enjoys
the efficiency benefit from plain ViT by skipping the encoder mask token [10].
Extending this strategy to hierarchical backbones is beyond the scope of this
paper. Instead, we adopt a straightforward solution in which we do not skip
the encoder mask token (similar to [5]), at the cost of slower training. We use
normalized pixels as the MAE reconstruction target [10] and set the decoder
depth as 2.
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Mask R-CNN Cascade Mask R-CNN

backbone pre-train APbox APmask FLOPs params time APbox APmask FLOPs params time

hierarchical-backbone detectors:
Swin-B 1K, sup 50.1 44.5 0.7T 109M 60ms 52.7 45.5 0.9T 139M 76ms

Swin-B 21K, sup 51.4 45.4 0.7T 109M 60ms 54.0 46.5 0.9T 139M 76ms

Swin-L 21K, sup 52.4 46.2 1.1T 218M 81ms 54.8 47.3 1.4T 248M 96ms

MViTv2-B 1K, sup 52.4 46.7 0.6T 73M 82ms 54.7 47.5 0.8T 103M 97ms

MViTv2-L 1K, sup 53.2 47.1 1.3T 239M 173ms 55.2 47.7 1.6T 270M 189ms

MViTv2-B 21K, sup 53.1 47.4 0.6T 73M 82ms 55.6 48.1 0.8T 103M 97ms

MViTv2-L 21K, sup 53.6 47.5 1.3T 239M 173ms 55.7 48.3 1.6T 270M 189ms

MViTv2-H 21K, sup 54.1 47.7 2.9T 688M 338ms 55.8 48.3 3.2T 718M 353ms

our plain-backbone detectors:
ViT-B 1K, MAE 51.6 45.9 0.8T 111M 77ms 54.0 46.7 1.1T 141M 92ms

ViT-L 1K, MAE 55.6 49.2 1.9T 331M 132ms 57.6 49.8 2.1T 361M 149ms

ViT-H 1K, MAE 56.7 50.1 3.4T 662M 189ms 58.7 50.9 3.6T 692M 203ms

Table A.2: Detailed measurements of Table 5 and Figure 3.

ViT-B ViT-L
pre-train APbox APmask APmask

rare APbox APmask APmask
rare

IN-1K, supervised 37.2 34.9 26.4 38.3 36.0 26.7
IN-21K, supervised 38.7 36.3 28.8 42.1 39.5 34.3
IN-1K, MAE 40.1 38.1 29.1 46.1 43.5 35.3

Table A.3: The LVIS counterpart of Table 4 (COCO pre-training ablation).
The observations are similar to Table 4: MAE pre-training has large gains over
supervised pre-training. Here we also report rare category results. We observe
that both IN-21K supervised and IN-1K MAE pre-training significantly improve
APmask

rare , especially for ViT-L. (Mask R-CNN, 1024 resolution, no soft-nms.)
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FigureA.1: The LVIS counterpart of Figure 3. All entries are implemented and
run by us to align low-level details. Here the detector head is Mask R-CNN
(input resolution 1024; no soft-nms). The trends are similar to those in Figure 3,
while IN-21K supervised pre-training has larger gains.
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backbone pre-train lr wd dp epochs
ViT-B/L none 1.6e−4 0.2 0.1/0.4 300/200
ViT-B/L supervised 8e−5 0.1 0.1/0.4 50
ViT-B/L/H MAE 1e−4 0.1 0.1/0.4/0.5 100/100/75
Swin-B/L supervised 1e−4/8e−5 0.05 0.3 50
MViTv2-B/L/H supervised 8e−5 0.1 0.4/0.5/0.6 100/50/36

Table A.4: Hyper-parameters for COCO. Multiple values in a cell are for different
model sizes. The epochs are chosen such that training longer starts to overfit.
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FigureA.2: The RetinaNet [14] counterpart of Figure 3, showing the trade-off
between accuracy and model size. We use the same Mask R-CNN training recipe
(input resolution 1024; no soft-nms) and hyper-parameters for RetinaNet. The
trends are similar to those in Figure 3.
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