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Abstract. Feature pyramid network (FPN) is one of the key compo-
nents for object detectors. However, there is a long-standing puzzle for
researchers that the detection performance of large-scale objects are usu-
ally suppressed after introducing FPN. To this end, this paper first re-
visits FPN in the detection framework and reveals the nature of the
success of FPN from the perspective of optimization. Then, we point
out that the degraded performance of large-scale objects is due to the
arising of improper back-propagation paths after integrating FPN. It
makes each level of the backbone network only has the ability to look
at the objects within a certain scale range. Based on these analysis, two
feasible strategies are proposed to enable each level of the backbone to
look at all objects in the FPN-based detection frameworks. Specifically,
one is to introduce auxiliary objective functions to make each backbone
level directly receive the back-propagation signals of various-scale ob-
jects during training. The other is to construct the feature pyramid in
a more reasonable way to avoid the irrational back-propagation paths.
Extensive experiments on the COCO benchmark validate the soundness
of our analysis and the effectiveness of our methods. Without bells and
whistles, we demonstrate that our method achieves solid improvements
(more than 2%) on various detection frameworks: one-stage, two-stage,
anchor-based, anchor-free and transformer-based detectors 4.

Keywords: Object Detection, Feature Pyramid Network

1 Introduction

Along with the advances in deep neural networks, recent years have seen re-
markable progress in object detection, which aims at detecting objects of prede-
fined categories. A common belief for the success of the state-of-the-art detec-
tors [2, 9, 14, 39, 45] is the use of feature pyramid network (FPN) [21]. Despite
impressive, there is an unexpected phenomenon after introducing FPN that the
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MMDetection Detectron2

Fig. 1. Comparing the detection performance between ResNet-50-DC5 and ResNet-50-
FPN based on MMDetection [4] and Detectron2 [42] toolboxes. The adopted detector
is Faster R-CNN [31]. The detectors are trained on COCO 2017 train set and evaluated
on COCO 2017 validation set [23].

overall detection performance improvement is built upon the increased Average
Precision of small objects (APS) and the decreased Average Precision of large
objects (APL). For instance, the experiments based on MMDetection [4] and De-
tectron2 [42] in Figure 1 demonstrate this phenomenon. When we leverage the
detection toolbox MMDetection, we can observe that APS increases from 19.5%
to 21.6% while APL decreases from 50.4% to 49.3% after integrating FPN. The
consistent tend can also be observed in Detectron2.

Prior to this study, there are mainly two assumptions on why the introduction
of FPN works. The first is that the use of FPN helps obtain better representations
by fusing multiple low-level and high-level feature maps [7, 17, 21, 24, 29]. The
second is that each pyramid level can be responsible for detecting objects within
a certain scale range, i.e., divide-and-conquer [5]. Obviously, both assumptions
should lead to the same conclusion that the increase in AP is due to the co-
increase in APS , APM and APL. However, the unexpected drops of APL in
Figure 1 indicates that there are other key differences between FPN-free and
FPN-based detection frameworks, while few studies have taken note of this. In
this paper, we propose to investigate FPN from the perspective of optimization.
Our assumption is that except for the multi-scale feature fusion and divide-and-
conquer, the back-propagation paths altered by FPN will also directly influence
the performance of the detection frameworks.

We start from explaining why FPN can benefit the detection framework
by changing the back-propagation paths. Then, we point out that the back-
propagation paths altered by the existing FPN paradigm will make each back-
bone stage only have the ability to see the objects within a certain scale range
(i.e., extracting features that are only fit to certain scale range objects), which
is the cause of the inconsistent changes in APS , APM and APL in Figure 1.
Accordingly, the key insight to achieve the consistent improvements in AP of
the objects with various scale ranges is to enable each backbone stage to see
all objects during training. Based on this principle, we propose to expand and
amend the existing back-propagation paths in FPN-based detection frameworks.
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Our approach of expanding the back-propagation paths is to introduce aux-
iliary objective functions so that both the original signals and the extra signals
can jointly supervise the learning of the corresponding backbone levels. The key
technique to the success of this approach is to introduce the uncertainty [15,16]
to better balance the various back-propagation signals. The strategy of amending
the back-propagation paths is to build the feature pyramid in a more effective
way and thereby, all levels of the backbone network can receive the sufficient
signals. The key technique of this approach is the feature grouping module used
to promise the space compactness of homogeneous representations.

In a nutshell, the contributions of this paper are:

– To the best of our knowledge, it is the first work to reveal the nature of the
success of FPN from the perspective of optimization. Further, we provide
new insight in explaining why the introduction of the traditional FPN would
suppress the performance of large-scale objects from this perspective.

– We propose to introduce auxiliary objective functions guided by uncertainty
to mitigate the inconsistent changes in APS , APM and APL. Since there
are no additional computational overhead during testing in the strategy, the
inference speed of the detectors can be preserved from decreasing.

– We propose a novel feature pyramid generalization paradigm. The key idea
is to make the back-propagation signals of various-scale objects can directly
pass to each level of the backbone network. We further design a cascade
structure to achieve more robust Average Precision (AP) improvements.

– The extensive experiments on COCO benchmark validate the soundness of
our principle and the effectiveness of our solutions. Without bells and whis-
tles, our method boosts the detection performance by more than 2% AP
on various frameworks: one-stage, two-stage, anchor-based, anchor-free and
transformer-based detectors.

2 Related Works

Object Detection. Recent years have witnessed remarkable improvements in
object detection [2,14,29,37,39]. In general, there are two leading paradigms in
this area, i.e., one-stage and two-stage frameworks. Two-stage pipeline is first
introduced by R-CNN [8], where a set of region proposals are yielded in the first
stage, and then the second stage classifies and refines the proposals. The next
milestone of two-stage detector is the emergence of Faster R-CNN [31], which
aims to improve the efficiency of two-stage methods and allow the detectors to
be trained end-to-end. After that, plenty of algorithms have been proposed to
further boost its performance, including applying multi-scale training and test-
ing [35, 36], redesigning and reforming architecture [2, 3, 9, 41, 50], introducing
relation and attention mechanism [13, 26, 32], improving the training strategy
and loss function [12, 20, 28, 30, 33], adopting more reasonable post-processing
algorithms [1, 11, 25, 40]. Different from the two-stage approaches, one-stage de-
tectors directly predict the object category and location based on the predefined
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anchors. They are simpler and faster than two-stage methods but have trailed
the detection performance until the emergence of RetinaNet [22]. Thereafter,
lots of works [5, 6, 19, 39] are presented to boost the detection performance of
one-stage detectors and at present, one-stage methods can achieve very close
performance with two-stage frameworks at a faster inference speed.
Feature Pyramids. Feature pyramids have dominated modern detectors for
serval years. Recent researches on feature pyramids can be roughly categorized
into three gatherings: top-down or bottom-up networks [21, 24, 29, 34], atten-
tion based methods [14, 17, 44, 47], and neural architecture search based ap-
proaches [7, 38]. Specifically, feature pyramid network (FPN) [21] is one of the
most classical paradigms to build a feature pyramid, which designs a top-down
architecture with lateral connections to make each pyramid level carry the high-
level semantic information. After that, several works [7, 14, 17, 24, 29, 47] follow
FPN and make attempts to obtain more effective representations by improv-
ing the strategy of multi-scale feature fusion. PANet [24] proposes to leverage
bottom-up architecture to shorten the information interaction path between
shallow layers and topmost features. SAFNet [14] aims to suppress the redun-
dant information at all pyramid scales by introducing attention mechanism. Nas-
fpn [7] proposes to construct the feature pyramids by neural architecture search.
However, the starting point of the above methods is that FPN can brings two
benefits, i.e., leveraging multi-scale feature fusion to obtain more effective repre-
sentations [7,17,21,24,29] and adopting divide-and-conquer to reduce the learn-
ing difficulty [5]. And it fails to explain why introducing FPN will suppress the
performance of large-scale objects. Motivated by this, we propose to revisit FPN
from the perspective of optimization, which successfully explains the anomalous
phenomenon in Figure 1. From this novel starting point, we further propose
to mitigate the inconsistent changes in APS , APM and APL by expanding or
amending the back-propagation paths in FPN-based detection frameworks. And
it is the main difference between our approaches and previous works.

3 Revisit FPN

3.1 Backbone Network

In object detection, the backbone network FB is used to extract the basic fea-
tures C from the input image I. For the convenience of presentation, we assume
that the adopted backbone network is ResNet [10]. It generally consists of one
basic feature extractor and plenty of residual blocks, where the residual blocks
can be grouped into four stages according to the resolutions of the output feature
maps. Specifically, C is calculated as follow,

C1 = fs0(I),

Ci = fsi−1(Ci−1), 2 ≤ i ≤ 5,
(1)

where C consists of {C2, C3, C4, C5} and FB consists of {fs0 , fs1 , fs2 , fs3 , fs4}.
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3.2 FPN-free Detection Framework

For FPN-free detectors, the network usually leverages C5 to perform the classi-
fication and regression of the objects as follow,

Ocls = fcls(fpre(C5)),

Oreg = freg(fpre(C5)),
(2)

where fpre is introduced to unify various operations between C5 and the output
results, e.g., the region proposal network [31]. Ocls and Oreg are the predicted
category information and location information of the objects, respectively. fcls
and freg are a 1× 1 convolution layer, respectively. During training, the classi-
fication and regression loss are calculated as follow,

L = Lcls(Ocls, GTcls) + λLreg(Oreg, GTreg), (3)

where the adopted objective functions Lcls and Lreg depend on the utilized
detection framework. GTcls and GTreg are the ground-truth classification and
regression information, respectively. λ is a hyper-parameter used to balance the
classification and regression losses.

3.3 FPN-based Detection Framework

For FPN-based detectors, C is first used to build the feature pyramid as follow,

C ′
5 = flat5(C5),

C ′
4 = flat4(C4) + UP2×(C

′
5),

C ′
3 = flat3(C3) + UP2×(C

′
4),

C ′
2 = flat2(C2) + UP2×(C

′
3),

Pl = fsmol(C
′
l), 2 ≤ l ≤ 5,

(4)

where P = {P2, P3, P4, P5} is the constructed feature pyramid. UP2× denotes
for the upsampling with the scale factor of 2. flati , 2 ≤ i ≤ 5 is the lateral
connections implemented by a 1 × 1 convolution layer, respectively, which is
used to change the number of the channels of C. fsmol , 2 ≤ l ≤ 5 is a linear
function and is usually implemented by a 3× 3 convolution layer. Without loss
of generality, Eq.(4) can be rewritten as follow,

Pl =

5∑
i=l

wi · Ci, 2 ≤ l ≤ 5, (5)

where wi is the final weights for the correspond level after polynomial expan-
sions [17]. Then, the network uses P to predict the classification and regression
information of the objects assigned to each pyramid level l as follow,

Ocls,l = fcls,l(fpre,l(Pl)),

Oreg,l = freg,l(fpre,l(Pl)).
(6)
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Fig. 2. Comparing the back-propagation paths between FPN-free detection framework
and FPN-based detection framework. The blue arrows represent for forward and the
orange arrows denote for back propagation. Note that, only the most significant back-
propagation signals to each backbone level will be marked.

The objects assignment rule is to make the low-resolution pyramid features (e.g.,
P5) be responsible for predicting the large-scale objects, while the high-resolution
pyramid features (e.g., P2) are utilized to predict the small-scale objects. During
network optimization, the losses at each pyramid level l are calculated as follow,

Ll = Lcls(Ocls,l, GTcls,l) + λLreg(Oreg,l, GTreg,l). (7)

3.4 Analysis of FPN

From Section 3.2 and 3.3, we can observe that introducing FPN can alter the
back-propagation paths between the objective functions and the backbone net-
work. Figure 2 shows the detailed differences between the FPN-free and FPN-
based detection framework. In the FPN-free detection pipeline, only the back-
bone feature C5 is directly under the supervision of the objective functions.
Since there exists the vanishing gradient problem in deep neural networks, the
shallow layers (i.e., {fs0 , fs1 , fs2 , fs3}) of the backbone network will be diffi-
cult to receive effective supervision by the backward propagation. While in the
FPN-based detection framework, we can observe that all the backbone features
are directly under the supervision of the objective functions. Since this strategy
avoids the vanishing gradient problem for the shallow layers, each level of the
backbone network can receive more supervision to train its own parameters. We
believe that it is the key reason why FPN-based detectors outperform FPN-free
detectors from the perspective of optimization.

To further demonstrate the principle above, we conduct the empirical study
and show the experimental results in Figure 3. FPN-Aux and DC5-Aux denote
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Fig. 3. The detection performance with different settings. The adopted backbone
network is ResNet-101 and the utilized detector is Faster R-CNN. The models are
trained on COCO 2017 train set and evaluated on COCO 2017 validation set [23].

for introducing the auxiliary losses in the shallow layers of the backbone net-
works [40,48]. Specifically, given C, we first have

Ôcls,i = f̂cls,i(f̂pre,i(Ci)), 2 ≤ i ≤ 4,

Ôreg,i = f̂reg,i(f̂pre,i(Ci)), 2 ≤ i ≤ 4.
(8)

For the two-stage detectors [31], to avoid double calculation of the proposals,
we will utilize the proposals calculated in Eq.(2) or Eq.(6) to extract the ROIs.
Then, the auxiliary losses can be obtained as follow,

L̂i = Lcls(Ôcls,i, GTcls) + λLreg(Ôreg,i, GTreg). (9)

And the final loss of the detection framework is the summation of the auxiliary
losses and the original losses. Since the auxiliary losses can be used to directly
supervise the learning of the shallow layers of the backbone network, if our as-
sumption is correct, introducing auxiliary losses should own a similar function to
integrating FPN from the perspective of optimization. In Figure 3, it is observed
that the auxiliary losses can boost the detection performance of FPN-free de-
tector (from 39.0% to 39.6%) and obtain a comparable AP result to FPN-based
detector (39.6% v.s. 39.5%). However, the introduction of auxiliary losses seems
useless to FPN-based detector (from 39.5% to 39.5%). This result validates our
assumption that from the perspective of optimization, the nature of the success
of FPN is the shorten back-propagation distance between the objective losses
and the shallow layers of the backbone network.

Now, the question is why the introduction of FPN will suppress the detec-
tion performance of large-scale objects. As illustrated in Figure 2, P2 is a linear
combination of {C2, C3, C4, C5}, therefore, L2 can directly supervise the learning
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of all the backbone stages. With the similar principle, L3, L4 and L5 have the
ability to directly constrain {C3, C4, C5}, {C4, C5} and C5, respectively. How-
ever, as mentioned above, L2 is only used to make the corresponding backbone
levels focus on the objects within a small scale range. Thus, the learned feature
C2 only has the ability to detect the small-scale objects well by back propaga-
tion. Meanwhile, the backbone network also needs to utilize Eq.(1) to calculate
{C3, C4, C5} with C2 as input. Obviously, it is insufficient for fs2 to extract rich
semantic features of the larger objects from C2. Worse still, the adverse effects
will be further accumulated when leveraging fs3 and fs4 to calculate C4 and C5.
As a result, the semantic information carried by C5 is somehow ineffective for
predicting the large-scale objects. And it is why there is always an unexpected
phenomenon after introducing FPN that the overall detection performance im-
provement is built upon the increased APS and the decreased APL.

The empirical study in Figure 3 also validate our assumption. In detail, we
can observe that after applying the auxiliary losses to the FPN-based detection
frameworks, the performance improvements among {APS ,APM ,APL} tend to
be consistent with FPN-free detectors w/ the auxiliary losses. The result shows
that as the auxiliary losses can help the shallow layers of the backbone learn the
features to detect various-scale objects, C5 no longer suffers from the ineffec-
tive features for predicting large-scale objects as only integrating FPN into the
detection framework. In other words, the lack of effective semantic information
of large-scale objects in C5 is the key reason for the decrease of APL. And the
problem is derived from the inability of fsi , 1 ≤ i ≤ 3 to look at various-scale
objects during training.

4 Methodology

Motivated by the finding that the inconsistent changes in {APS ,APM ,APL} is
caused by the inability of fsi , 1 ≤ i ≤ 3 to see all objects during training, we pro-
pose to make the backbone stages look at various-scale objects by expanding or
amending the back-propagation paths in FPN-based detection frameworks to ad-
dress the decreased APL problem above. Specifically, we propose two strategies,
i.e., introducing auxiliary objective functions and building the feature pyramid
in a more reasonable manner in this section.

4.1 Auxiliary Losses

As mentioned in Section 3.4, introducing auxiliary losses can help fsi , 1 ≤ i ≤ 3
own the ability to see all objects. However, the simple summation of the losses
may be insufficient. In order to introduce auxiliary losses more rationally, we
propose to leverage the uncertainty [15,16,43] to better balance the various-type
loss signals. Specifically, we incorporate the uncertainty into each classification
and regression auxiliary loss as follow,

L(p, gt) = e−αL̂(p, gt) + τα, (10)
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where p is the predicted result and gt is the corresponding ground truth. L̂
denotes for the loss function, e.g., Lreg and Lcls. τ is a hyper-parameter used to
avoid generating high uncertainty α. α is generated as follow,

α = ReLU(w · x+ b), (11)

where x is the feature map also utilized to predict p. w and b are the learnable
parameters. ReLU is used to promise α ≥ 0.

4.2 Feature Pyramid Generation Paradigm

Building the feature pyramid in a more reasonable way is also an effective method
to achieve consistent improvements in {APS ,APM ,APL}. As analysed in Sec-
tion 3.4, the problem in the process of constructing traditional FPN is caused
by Eq.(4). Specifically, Pl should contain the feature maps from all backbone
levels so that Ll can help each backbone level see the objects inputted to Ll.
Accordingly, the summation of Ll, 2 ≤ l ≤ 5 can make each backbone level own
the ability to look at all objects.
Feature Grouping. To select effective feature maps from C′ = {C ′

2, C
′
3, C

′
4, C

′
5}

for the objects assigned to the corresponding pyramid level, we first perform
channel swapping on C′ as follow,

Xk = Rzhw(Mk ⊗Rzn(C ′
k)), 2 ≤ k ≤ 5, (12)

where ⊗ denotes for matrix multiplication. Rzn reshapes C ′
k into the size of

Z×HW and Rzhw reshapes the input tensor into the size of Z×H ×W , where
Z is the number of the channels and H×W is the resolution of the feature map.
Mk is a matrix of size Z ×Z used to achieve channel swapping. In practice, Mk

is generated as follow,

Mk = Gk(C
′
k), (13)

where the structure of Gk is shown in Figure 4. We expect Mk to own the abil-
ity to make the homogeneous feature maps become compact along the channel
dimension.

Then, Xk is divided into quarters along the channel dimension,

Xk = {Xk,2, Xk,3, Xk,4, Xk,5}, (14)

where we assume that Xk,l, 2 ≤ l ≤ 5 only carries the effective semantic in-
formation of the objects assigned to the pyramid level l. After that, we have

P ′
l = X2,l ⊕X3,l ⊕X4,l ⊕X5,l, 2 ≤ l ≤ 5, (15)

where ⊕ denotes for the concatenation operation. Finally, the feature pyramid
is constructed as follow,

Pl = fsmol(P
′
l ), 2 ≤ l ≤ 5. (16)
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Fig. 4. An illustration of the structure of Gk. Conv1×1 denotes for a 1×1 convolution
layer.GN means group normalization andGAP is the global average pooling operation.

Cascade Structure. To better promote the space compactness, we propose
to employ a cascade structure to conduct feature grouping in a coarse-to-fine
manner. Specifically, at the second stage, P ′

l will first be taken as the input of

the feature grouping module and thereby we can obtain P̂ ′
l . Then, we have

P ′′
l = fw(P

′
l ) · P ′

l + fw(P̂
′
l ) · P̂ ′

l , 2 ≤ l ≤ 5, (17)

where fw is a non-linear function used to generate the feature fusion weights. In
our implementation, fw consists of two convolution blocks (a block consists of
a convolution, a normalization and an activation layer). Finally, Eq.(16) will be
conducted to obtain the feature pyramid with the input P ′′

l . The same can be
done for the cases when the number of the stages is greater than 2.

5 Experiments

Dataset. Our approaches are evaluated on the challenging MS COCO bench-
mark [23], which contains ∼118k images for training (train-2017 ), 5k images for
validation (val-2017 ) and ∼20k images with no disclosed annotations for testing
(test-dev). By default, the detection frameworks in this section are trained on
train-2017 set and evaluated on val-2017 set.

Implementation Details. Our methods are implemented with MMDetection
[4]. We train our detection frameworks on 8 NVIDIA Tesla V100 GPUs with a
32 GB memory per-card. Following previous works [21, 22, 31], we initialize the
backbone networks using the weights pre-trained on ImageNet [18] and randomly
initialize the weights of the newly added modules. The input images are resized to
keep their shorter side being 800 and their longer side less or equal to 1,333. The
optimizer is stochastic gradient descent (SGD) with momentum of 0.9, weight
decay of 0.0001, and batch size of 16 (i.e., 2 images per GPU). By default, the
models are trained for 12 epochs (1× schedule), and we set the initial learning
rate as 0.02 and decay it by 0.1 at epoch 9 and 11, respectively. We adopt random
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Table 1. Ablation study on auxiliary losses. FPS is evaluated on a single Titan Xp.

Framework Backbone Auxiliary Uncertainty AP AP50 AP75 APS APM APL FPS

One-stage
RetinaNet ResNet-101 38.5 57.6 41.0 21.7 42.8 50.4 15.0
RetinaNet ResNet-101 ✓ 38.7 57.7 41.2 21.2 43.0 51.2 15.0
RetinaNet ResNet-101 ✓ ✓ 40.1 61.4 43.7 23.3 44.4 52.4 15.0

Two-stage
Faster R-CNN ResNet-101 39.5 60.4 42.9 23.6 43.7 51.6 15.6
Faster R-CNN ResNet-101 ✓ 39.5 60.0 43.3 21.8 43.5 52.2 15.6
Faster R-CNN ResNet-101 ✓ ✓ 40.9 62.0 44.8 24.2 45.3 53.3 15.6

Table 2. Ablation study on the feature pyramid generation paradigm.

Framework Backbone Feature Grouping Cascade Times AP AP50 AP75 APS APM APL FPS

One-stage
RetinaNet ResNet-101 38.5 57.6 41.0 21.7 42.8 50.4 15.0
RetinaNet ResNet-101 ✓ 1× 40.2 60.1 42.6 23.3 44.5 52.7 12.2
RetinaNet ResNet-101 ✓ 2× 40.8 60.5 43.6 24.0 44.8 54.4 11.7
RetinaNet ResNet-101 ✓ 3× 41.2 60.8 43.8 24.1 45.2 55.2 11.1

Two-stage
Faster R-CNN ResNet-101 39.5 60.4 42.9 23.6 43.7 51.6 15.6
Faster R-CNN ResNet-101 ✓ 1× 40.6 61.9 44.5 24.2 45.0 52.7 12.0
Faster R-CNN ResNet-101 ✓ 2× 41.7 62.7 45.4 24.8 45.9 53.7 11.4
Faster R-CNN ResNet-101 ✓ 3× 42.2 63.0 45.8 25.5 46.1 55.8 10.9

horizontal flip as the data augmentation. Other unmentioned hyper-parameters
follow the settings in MMDetection.

In the inference phase, the input image is first resized in the same way as
the training phase and then we forward it through the whole network to output
the predicted bounding boxes with the category probability distribution. After
that, we leverage a score 0.05 to preliminary filter out background bounding
boxes and then output the top 1,000 detections per pyramid level. Finally, the
non-maximum suppression (NMS) is applied with the IoU threshold 0.5 per class
to output the final top 100 confident detections per image.
Evaluation Metrics. The results are evaluated with standard COCO-style met-
rics, including AP (averaged over IoU thresholds), AP50 (AP for IoU threshold
50%), AP75 (AP for IoU threshold 75%), APS (AP on objects of small scales),
APM (AP on objects of medium scales) and APL (AP on objects of large scales).

5.1 Ablation Studies

Auxiliary Losses. Since the auxiliary losses can build extra back-propagation
paths between the objective functions and the backbone levels, we propose to in-
troduce auxiliary losses to address the dropped APL problem. Table 1 shows the
ablation experiments. After introducing the auxiliary losses, it is observed that
APL increases from 50.4% to 51.2% and from 51.6% to 52.2% in the one-stage
and two-stage detector, respectively. The improvements indicate that the auxil-
iary losses can help fsi , 1 ≤ i ≤ 3 own the ability to see all objects and thereby
C5 can carry more effective semantic information of the large-scale objects. Fur-
thermore, we can observe that APS drops a lot if simply add the auxiliary losses
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Fig. 5. Visualization of the learned features. The adopted model is Faster R-CNN
with ResNet-101. The pictures are selected from MS COCO val-2017.

and the original losses linearly. The drops indicate that to some extent, the
auxiliary signals will overwrite the original loss signals especially for the small
objects whose effective information is the least. To this end, we introduce the
uncertainty to the auxiliary losses to scale the auxiliary signals adaptively. It is
observed that APS improves from 21.2% to 23.3% and from 21.8% to 24.2% in
the one-stage and two-stage pipeline, respectively. As a result, the overall detec-
tion performance improves with the consistent changes in {APS ,APM ,APL}.
These improvements well demonstrate the correctness of our speculation and
the effectiveness of our method. Furthermore, since the auxiliary predictions do
not participate in the model inference phase, the FPS of the detectors will not
drop after the introduction of the auxiliary losses.
Feature Grouping. From the perspective of optimization, we have identified
the unreasonable operation in the process of building traditional FPN. Specif-
ically, the top-down architecture will make the shallow layers of the backbone
network fail to see the large-scale objects. To mitigate the adverse effects caused,
we propose to leverage a feature grouping module to construct each feature pyra-
mid level by selecting the feature maps from all backbone stages. Table 2 demon-
strates the empirical study. We can observe that the FPN with feature grouping
outperforms the traditional FPN by 1.7% and 1.1% in one-stage and two-stage
detection framework, respectively. And AP increases with the consistent rises in
{APS ,APM ,APL}. The result indicates that the feature grouping module has
the ability to make each backbone level see all objects through amending the
back-propagation paths between objective functions and the backbone network.
Cascade Structure. To achieve more robust improvements by enhancing the
space compactness of the homogeneous feature maps, we propose to introduce a
cascade feature grouping structure. The experimental results in Table 2 demon-
strate the effectiveness of this structure. It is observed that the detection per-
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Table 3. The improvements on AP after integrating the cascade feature grouping
module into various detection frameworks. The 1×, 3× training schedules follow the
settings explained in MMDetection [4]. FPN-CFG denotes for applying the cascade
feature grouping module into FPN.

Method Backbone Schedule AP AP50 AP75 APS APM APL

one-stage
RetinaNet [22] ResNet-101-FPN 1× 38.5 57.6 41.0 21.7 42.8 50.4
RetinaNet [22] ResNet-101-FPN-CFG 1× 41.2 (+2.7) 60.8 43.8 24.1 45.2 55.2
FreeAnchor [46] ResNet-101-FPN 1× 40.3 59.0 43.1 21.8 44.0 54.2
FreeAnchor [46] ResNet-101-FPN-CFG 1× 43.2 (+2.9) 62.0 46.3 24.4 47.4 57.6

ATSS [45] ResNet-101-FPN 1× 41.5 59.9 45.2 24.2 45.9 53.3
ATSS [45] ResNet-101-FPN-CFG 1× 43.8 (+2.3) 62.1 47.3 26.8 48.0 57.2

two-stage
Faster R-CNN [31] ResNet-101-FPN 1× 39.4 60.1 43.1 22.4 43.7 51.1
Faster R-CNN [31] ResNet-101-FPN-CFG 1× 42.2 (+2.8) 63.0 45.8 25.5 46.1 55.8
Mask R-CNN [9] ResNet-101-FPN 1× 40.0 60.5 44.0 22.6 44.0 52.6
Mask R-CNN [9] ResNet-101-FPN-CFG 1× 43.3 (+3.3) 63.7 47.6 25.7 47.1 56.6

Cascade R-CNN [2] ResNet-101-FPN 1× 42.0 60.4 45.7 23.4 45.8 55.7
Cascade R-CNN [2] ResNet-101-FPN-CFG 1× 44.5 (+2.5) 63.1 48.4 26.1 48.5 57.8

Cascade Mask R-CNN [2] ResNet-101-FPN 1× 42.9 61.0 46.6 24.4 46.5 57.0
Cascade Mask R-CNN [2] ResNet-101-FPN-CFG 1× 45.4 (+2.5) 63.8 49.4 27.5 49.3 59.5

anchor-free
FCOS [39] ResNet-50-FPN 1× 36.6 56.0 38.8 21.0 40.6 47.0
FCOS [39] ResNet-50-FPN-CFG 1× 39.6 (+3.0) 58.8 42.3 22.9 43.4 51.9

Sparse R-CNN [37] ResNet-50-FPN 1× 37.9 56.0 40.5 20.7 40.0 53.5
Sparse R-CNN [37] ResNet-50-FPN-CFG 1× 40.1 (+2.2) 58.7 42.6 22.2 42.6 55.6

FSAF [49] ResNet-101-FPN 1× 39.3 58.6 42.1 22.1 43.4 51.2
FSAF [49] ResNet-101-FPN-CFG 1× 42.2 (+2.9) 62.0 44.8 24.3 45.9 56.2

transformer
Mask R-CNN [27] Swin-T-FPN 1× 42.7 65.2 46.8 26.5 45.9 56.6
Mask R-CNN [27] Swin-T-FPN-CFG 1× 46.0 (+3.3) 67.0 50.5 28.8 49.7 59.1

strong baseline
Cascade Mask R-CNN [2] ResNeXt-101-64x4d-FPN 3× 46.6 65.1 50.6 29.3 50.5 60.1
Cascade Mask R-CNN [2] ResNeXt-101-64x4d-FPN-CFG 3× 50.1 (+3.5) 68.6 54.5 32.7 53.7 64.3

formance improves steadily as the number of cascade times increases in both
one-stage and two-stage frameworks. Moreover, the improvements of AP always
benefit from the consistent improvements of {APS ,APM ,APL}.
Visualization of Learned Features. In Figure 5, we visualize the feature
maps outputted by the backbone levels (i.e., C) and pyramid levels (i.e., P). It
is observed that C contain the semantic information of the whole image, while
P only carries the effective semantics used to detect the objects within the
corresponding scale range, indicating that the feature grouping module can well
promise the space compactness of the homogeneous feature maps.

5.2 Performance with Various Detection Frameworks.

To further prove the soundness of our principle and the robustness of our ap-
proach, we integrate the cascade feature grouping (CFG) structure into vari-
ous detection frameworks. Table 3 demonstrates the experimental results. For
one-stage detectors, our approach consistently improves the baseline frameworks
by at least 2.3% AP. For two-stage detectors with pre-defined anchors and
ResNet backbone, the baseline frameworks are increased by more than 2.5%
AP. Recent academic attention has been geared toward anchor-free detectors
and transformer-based backbone networks. We have also made attempts to in-
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Table 4. Experimental results on instance segmentation task. The models are trained
on the MS COCO train-2017 split and evaluated on the MS COCO val-2017 set.

Method Backbone Schedule APseg APseg
50 APseg

75 APseg
S APseg

M APseg
L

Mask R-CNN Swin-T-FPN 1× 39.30 62.20 42.20 20.50 41.80 57.80
Mask R-CNN Swin-T-FPN-CFG 1× 41.40 (+2.1) 64.50 44.60 21.90 44.60 58.80

Mask R-CNN ResNet-101-FPN 1× 36.10 57.50 38.60 18.80 39.70 49.50
Mask R-CNN ResNet-101-FPN-CFG 1× 38.70 (+2.6) 60.80 41.50 19.00 42.00 56.00

Cascade Mask R-CNN ResNet-101-FPN 1× 37.30 58.20 40.10 19.70 40.60 51.50
Cascade Mask R-CNN ResNet-101-FPN-CFG 1× 39.40 (+2.1) 61.30 42.60 19.70 42.60 57.10

tegrate the proposed structure into these frameworks. It is observed that the
cascade feature grouping structure brings more than 2.2% AP improvements
to the anchor-free detectors and the transformer-based detectors. Moreover, we
have also trained a strong baseline with multi-scale training, 3× schedule and
ResNeXt-101-64x4d backbone. After integrating the cascade feature grouping
module into the traditional FPN, the strong baseline is still improved by 3.5%
AP. It is worth mentioning that the performance gains are all achieved by con-
sistently boosting the AP of the objects within different scale ranges. The results
above together show the necessity and effectiveness that each level of the back-
bone network should own the ability to look at all objects.

5.3 Instance Segmentation

To verify the generalization ability of our approach, we also apply the cascade fea-
ture grouping module on a more challenging instance segmentation task, which
requires the prediction of object instances and their per-pixel segmentation mask
simultaneously. As shown in Table 4, our method improves APseg of different
detectors from 39.30% to 41.40%, 36.10% to 38.70%, and 37.30% to 39.40%,
respectively. Moreover, all the improvements are built upon the consistent in-
creases in {APseg

S ,APseg
M ,APseg

L }.

6 Conclusions

This work first identifies the nature of the success of FPN from the perspective
of optimization. Based on the principle, we succeed in illustrating the reason
why the introduction of FPN will suppress the detection performance of large
objects. We further conclude that the key to address the inconsistent changes
problem in {APS ,APM ,APL} is to enable each backbone level to look at all
objects. Therefrom, we propose to design two strategies to achieve this goal.
One is to introduce the auxiliary losses so that the auxiliary signals containing
the information of all objects can directly pass through the shallow layers of
the backbone network. The other is to integrate the cascade feature grouping
structure into the existing FPN, which can also amend the back-propagation
paths between the objective functions and the shallow layers of the backbone
network. Extensive experiments show the soundness of our principle and the
effectiveness of our strategies. Without bells and whistles, our method brings
consistent performance improvements to 12 different detection frameworks.
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