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ARr50@100 ARr50@300 ARr50@1k AR50@1k
LVIS-all 63.3 76.3 79.7 80.9
LVIS-base 62.2 76.2 78.5 81.0

(a) Proposal networks trained with (top) and without (bottom) rare classes. We report
recalls on rare classes and all classes at IoU threshold 0.5 with different number of proposals. Proposal
networks trained without rare classes can generalize to rare classes in testing.

ARhalf-1st50@1k ARhalf-2nd50@1k
LVIS-half-1st 80.8 69.6
LVIS-half-2nd 62.9 82.2

(b) Proposal networks trained on half of the LVIS classes. We report recalls at IoU threshold
0.5 on the other half classes. Proposal networks produce non-trivial recalls on novel classes.
Table 8: Proposal network generalization ability evaluation. (a): Generalize
from 866 LVIS base classes to the 337 rare classes; (b): Generalize from uniformly
sampled half LVIS classes (601/ 602 classes) to the other half.

A Region proposal quality
In this section, we show the region proposal network trained on LVIS [18] is
satisfactory and generalizes well to new classes by default. We experiment un-
der our strong baseline in § 5.1. Table 8a shows the proposal recalls with or
without rare classes in training. First, we observe the recall gaps between the
two models on rare classes are small (79.7 vs. 78.5); second, the gaps between
rare classes and all classes are small (79.7 vs. 80.9); third, the absolute recall is
relatively high (∼ 80%, note recall at IoU threshold 0.5 can be translated into
oracle mAP-pool [8] given perfect classifier and regressor). All observations indi-
cate the proposals have good generalization abilities to new classes even though
they are supervised to background during training. We consider the proposal
generalization is currently not the performance bottleneck in open-vocabulary
detection. This especially the case as modern detectors use an over-sufficient
number of proposals in testing (1K proposals for < 20 objects per image). Our
observations are consistent with ViLD [17].

We in addition evaluate a more strict setting, where we uniformly split LVIS
classes into two halves. I.e., we use classes ID 1, 3, 5, · · · as the first half, and the
rest as the second half. These two subsets have completely different definitions
of “objects”. We then train a proposal network on each of them, and evaluate
on both subsets. As shown in Table 8b, the proposal networks give non-trivial
recalls at the complementary other half (69.6% over 82.2% percent of the full
generalizability). This again supports proposal networks trained on a diverse
vocabulary learned a general concept of objects.

B Direct captions supervision
As we are using a language model CLIP [42] as the classifier, our framework can
seamlessly incorporate the free-form caption text as image-supervision. Using
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Supervision mAPmask mAPmask
novel

Box-Supervised - 30.2 16.4
Detic w. CC Image label 31.0 19.8
Detic w. CC Caption 30.4 17.4
Detic w. CC Both 31.0 21.3

mAP50boxall mAP50boxnovel

Box-Supervised - 39.3 1.3
Detic w. COCO-cap. Image label 44.7 24.1
Detic w. COCO-cap. Caption 43.8 21.0
Detic w. COCO-cap. Both 45.0 27.8

Table 9: Direct caption supervision. Top: Open-vocabulary LVIS with Conceptual
Caption as weakly-labeled data; Bottom block: Open-vocabulary COCO with COCO-
caption as weakly-labeled data. Directly using caption embeddings as a classifier is
helpful on both benchmarks; the improvements are complementary to Detic.

the notations in § 4, here Dcls = {(I, t)i} where t is a free-form text. In our
open-vocabulary detection formulation, text t can natrually be converted to an
embedding by the CLIP [42] language encoder L: w = L(t). Given a minibatch
of B samples {(I, t)i}Bi=1, we compose a dynamic classification layer by stacking
all caption features within the batch W̃ = L({ti}Bi=1). For the i-th image in the
minibatch, its “classification” label is the i-th text, and other texts are negative
samples. We use the injected whole image box to extract RoI feature f ′i for image
i. We use the same binary cross entropy loss as classifying image labels:

Lcap =
B∑

i=1

BCE(W̃f ′i , i)

We do not back-propagate into the language encoder.
We evaluate the effectiveness of the caption loss in Table 9 on both open-

vocabulary LVIS and COCO (see dataset details in Appendix H). We compare
individually applying the max-size loss for image labels and the caption loss,
and applying both of them. Both image labels and captions can improve both
overall mAP and novel class mAP. Combining both losses gives a more significant
improvement. Our open-vocabulary COCO results in Table 3 uses both the max-
size loss and the caption loss.

C LVIS baseline details

We first describe the standard LVIS baseline from the detectron2 model zoo3.
This baseline uses ResNet-50 FPN backbone and a 2× training schedule (180k
3 https://github.com/facebookresearch/detectron2/blob/main/configs/
LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml

https://github.com/facebookresearch/detectron2/blob/main/configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
https://github.com/facebookresearch/detectron2/blob/main/configs/LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
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mAPboxmAPbox
r mAPmaskmAPmask

r T
D2 baseline [66] 22.9 11.3 22.4 11.6 12h
+Class-agnostic box&mask 22.3 10.1 21.2 10.1 12h
+Federated loss [76] 27.0 20.2 24.6 18.2 12h
+CenterNet2 [76] 30.7 22.9 26.8 19.4 13h
+LSJ 640×640, 4× sched. [15] 31.0 21.6 27.2 20.1 17h
+CLIP classifier [42] 31.5 24.2 28 22.5 17h
+Adam optimizer, lr2e-4 [26] 30.4 23.6 26.9 21.4 17h
+IN-21k pretrain [48]* 35.3 28.2 31.5 25.6 17h
+Input size 896×896 37.1 29.5 33.2 26.9 25h
+Swin-B backbone [37] 45.4 39.9 40.7 35.9 43h
*Remove rare class ann.[17] 33.8 17.6 30.2 16.4 17h

Table 10: LVIS baseline evolution. First row: the configuration from the detectron2
model zoo. The following rows change components one by one. Last row: removing rare
classes from the “+IN-21k pretrain*” row. The two gray-filled rows are the baselines in
our main paper, for full LVIS and open-vocabulary LVIS, respectively. We show rough
wall-clock training times (T ) on our machine with 8 V100 GPUs in the last column.

iterations with batch-size 16)4. Data augmentation includes horizontal flip and
random resize short side [640, 800], long side < 1333. The baseline uses SGD
optimizer with a learning rate 0.02 (dropped by 10× at 120k and 160k iteration).
The bounding box regression head and the mask head are class-specific.

Table 10 shows the roadmap from the detectron2 baseline to our baseline
(§ 5.1). First, we prepare the model for new classes by making the box and mask
heads class-agnostic. This slightly hurts performance. We then use Federated
loss [76] and upgrade the detector to CenterNet2 [76] (i.e., replacing RPN with
CenterNet and multiplying proposal score to classification score). Both modifi-
cations improve mAP and mAPrsignificantly, and CenterNet2 slightly increases
the training time.

Next, we use the EfficientDet [15, 58] style large-scale jittering and train a
longer schedule (4×). To balance the training time, we also reduce the training
image size to 640×640 (the testing size is unchanged at 800×1333) and increase
batch-size to 64 (with the learning rate scaled up to 0.08). The resulting aug-
mentation and schedule is slightly better than the default multi-scale training,
with 30% more training time. A longer schedule is beneficial when using more
data, and can be improved by larger resolution.

Next, we switch in the CLIP classifier [42]. We follow ViLD [17] to L2 normal-
ize the embedding and RoI feature before dot-product. Note CenterNet2 uses a
cascade classifier [5]. We use CLIP for all of them. Using CLIP classifier improves
rare class mAP.

Finally, we use an ImageNet-21k pretrained ResNet-50 model from Ridnik
et al. [48]. We remark the ImageNet-21k pretrained model requires using Adam
optimizer (with learning rate 2e-4). Combing all the improvements results in
4 We are aware different projects use different notations of a 1× schedule. In this paper
we always refer 1× schedule to 16× 90k images
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Ratio Size mAPmask mAPmask
novel

Bos-Supervised 1: 0 - 30.2 16.4
Detic w. IN-L 1: 1 640 30.9 23.3
Detic w. IN-L 1: 1 320 32.0 24.0
Detic w. IN-L 1: 4 640 31.1 23.5
Detic w. IN-L 1: 4 320 32.4 24.9
Detic w. CC 1: 1 640 30.8 21.6
Detic w. CC 1: 1 320 30.8 21.5
Detic w. CC 1: 4 640 30.7 21.0
Detic w. CC 1: 4 320 31.1 21.8

Table 11: Ablations of the resolution change. We report mask mAP on the open-
vocabulary LVIS following the setting of Table 1. Top: ImageNet as the image-labeled
data. Bottom: CC as the image-labeled data.

35.3 mAPbox and 31.5 mAPmask, and trains in a favorable time (17h on 8 V100
GPUs). We use this model as our baseline in the main paper.

Increasing the training resolution or using a larger backbone [37] can further
increase performance significantly, at a cost of longer training time. We use the
large models only when compared to the state-of-the-art models.

D Resolution change for classification data

Table 11 ablates the resolution change in § 5.1. Using a smaller input resolution
improves ∼ 1 point for both mAP and mAPnovel with ImageNet, but does not
impact much with CC. Using more batches for the weak datasets is slightly
better than a 1 : 1 ratio.

E Prediction-based losses implementation details

Following the notations in § 4, we implement the prediction-based weakly-
supervised detection losses as below:
WSDDN [3] learns a soft weight on the proposals to weight-sum the proposal
classification scores into a single image classification score:

LWSDDN = BCE(
∑

j

(softmax(W′F)j ∗ Sj), c)

where W′ is a learnable network parameter.
Predicted [45] selects the proposal with the max predicted score on class c:

LPredicted = BCE(Sj , c), j = argmaxjSjc

DLWL* [44] first runs a clustering algorithm with IoU threshold 0.5. Let J be
the set of peaks of each cluster (i.e., the proposal within the cluster and has the
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max predicted score on class c), We then select the top Nc = 3 peaks with the
highest prediction scores on class c.

LDLWL* =
1

Nc

Nc∑

t=1

BCE(Sjt , c),

jt = argmaxj∈J ,j #={j1,...,jt−1}Sjc

The original DLWL [44] in addition upgrades S using an IoU-based assignment
matrix from self-training and bootstrapping (See their Section 3.2). In our im-
plementation, we did not include this part, as our goal is to only compare the
training losses.

F More comparison between prediction-based and
non-prediction-based methods

Our non-prediction-based losses perform significantly better than prediction-
based losses as is shown in Table 1. In this section, we take the max-size loss and
the predicted-loss as the representitives and conduct more detailed comparisons
between them. A straightforward reason is that the predicted loss requires a
good initial prediction to guide the pseudo-label-based training. However in the
open-vocabulary detection setting the initial predictions are inherently flawed.
To verify this, in Table 12a, we show both improving the backbone and including
rare classes in training can narrow the gap. However in the current performance
regime, our max-size loss performs better.

We highlight two additional advantages of the max-size loss that may con-
tribute to the good performance: (1) the max-size loss is a safe approximation
of object regions; (2) the max-size loss is consistent during training. Figure 4
provides qualitative examples of the assigned region for the predicted loss and
the max-size loss. First, we observe that while being coarse at the boundary, the
max-size loss can cover the target object in most cases. Second, the assigned
regions of the predicted loss are usually different across training iterations, es-
pecially in the early phase where the model predictions are unstable. On the
contrary, max-size loss supervises consistent regions across training iterations.

Table 12b quantitatively evaluates these two properties. We use the ground
truth box annotation in the full COCO detection dataset and a subset of Ima-
geNet with bounding box annotation 5 to evaluate the cover rate. We define cover
rate as the ratio of image labels whose ground-truth box has > 0.5 intersection-
over-area with the assigned region. We define the consistency metric as the av-
erage assigned-region IoU of the same image between the 1/2 schedule and the
final schedule. Table 12b shows max-size loss is more favorable than predicted
loss on these two metrics. However we highlight that these two metrics alone do
not always correlate to the final performance, as the image-box loss is perfect
on both metrics but underperforms max-size loss.
5 https://image-net.org/download-bboxes.php. 213K of the 1.2M IN-L images have
bounding box annotations.

https://image-net.org/download-bboxes.php
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Dataset Backbone mAPmask mAPmask
novel

Box-Supervised 30.2 16.4
Predicted LVIS-base Res50 31.2 20.4
Max-size 32.4 (+1.2) 24.6 (+4.2)

Box-Supervised 38.4 21.9
Predicted LVIS-base SwinB 40.0 31.7
Max-size 40.7 (+0.7) 33.8 (+2.1)

Box-Supervised 31.5 25.6
Predicted LVIS-all Res50 32.5 28.4
Max-size 33.2 (+0.7) 29.7 (+1.3)

Box-Supervised 40.7 35.9
Predicted LVIS-all SwinB 40.6 39.8
Max-size 41.3 (+0.7) 40.9 (+1.1)

(a) Predicted loss and max-size loss with different prediction qualities. We show the mask
mAP of the box-supervised baseline, Predicted loss [45], and our max-size loss. We show the delta
between max-size loss and predicted loss in green. Improving the backbone and including rare classes
in training can both narrow the gap. Max-size consistently performs better.

Cover rate Consistency
IN-L COCO IN-L CC COCO

Predicted 69.0 73.8 71.5 30.0 57.7
Max-size 92.8 80.0 87.9 73.0 62.8

(b) Assigned proposal cover rate and consistency. Left: ratio of assigned proposal covering the
ground truth both. We evaluate on an ImageNet subset that has box ground truth and the annotated
COCO training set; Right: average assigned bounding box IoU of between the final model and the
half-schedule model.

Table 12: Comparison between predicted loss and and max-size loss. (a):
comparison under different baselines. (b): comparison in customized metrics.
G ViLD baseline details

The baseline in ViLD [17] is very different from detectron2. They use MaskRCNN
detector [20] with Res50-FPN backbone, but trains the network from scratch
without ImageNet pretraining. They use large-scale jittering [15] with input res-
olution 1024× 1024 and train a 32× schedule. The optimizer is SGD with batch
size 256 and learning rate 0.32. We first reproduce their baselines (both the or-
acle detector and ViLD-text) under the same setting. We observe half of their
schedule (16×) is sufficient to closely match their numbers. The half training
schedule takes 4 days on 4 nodes (each with 8 V100 GPUs). We then finetune
another 16× schedule using ImageNet data with our max-size loss.

H Open-vocabulary COCO benchmark details

Open-vocabulary COCO is proposed by Bansal et al. [2]. They manually select 48
classes from the 80 COCO classes as base classes, and 17 classes as novel classes.
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mAP50boxall mAP50boxnovel

Box-Supervised (base cls) 39.3 1.3
Self-training [54] 39.5 1.8
WSDDN [3] 39.9 5.9
DLWL* [44] 42.9 19.6
Predicted [45] 41.9 18.7
Detic (Max-object-score) 43.3 20.4
Detic (Image-box) 43.4 21.0
Detic (Max-size) 44.7 24.1
Box-Supervised (all cls) 54.9 60.0

Table 13: Different ways to use image supervision on open-vocabulary
COCO. The models are trained using the OVR-CNN [72] recipe with ResNet50-C4 [2]
backbone. We follow setups in Table 1. The observations are consistent with LVIS.

The training set is the same as the full COCO, but only images containing at least
one base class are used. During testing, we report results under the “generalized
zero-shot detection” setting [2], where all COCO validation images are used.

We strictly follow the literatures [2, 43, 72] to use FasterRCNN [46] with
ResNet50-C4 backbone and the 1× training schedule (90k iterations). We use
horizontal flip as the only data augmentation in training and keep the input
resolution fixed to 800×1333 in both training and testing. We use SGD optimizer
with a learning rate 0.02 (dropped by 10× at 60k and 80k iteration) and batch
size 16. The evaluation metric on open-vocabulary COCO is box mAP at IoU
threshold 0.5. Our reproduced baseline matches OVR-CNN [72]. Our model is
finetuned on the baseline model with another 1× schedule. We sample detection
data and image-supervised data in a 1 : 1 ratio.

Table 13 repeats the experiments in Table 1 on open-vocabulary COCO. The
observations are consistent: our proposed non-prediction-based methods outper-
form existing prediction-based counterparts, and the max-size loss performs the
best among our variants.

I Compare to MosaicOS [73]

MosaicOS [73] first uses image-level annotations to improve LVIS detectors. We
compare to MosaicOS [73] by strictly following their baseline setup (without
any improvements in § 5.1). The detailed hyper-parameters follow the detec-
tron2 baseline as described in Appendix C. We finetune on the Box-supervised
model with an additional 2× schedule with Adam optimizer. Table 14 shows our
re-trained baseline exactly matches their reported results from the paper. Our
method is developed based on the CLIP classifier, and we also report our baseline
with CLIP. The baseline has slightly lower mAP and higher mAPr. MosaicOS
uses IN-L and additional web-search images as image-supervised data. Detic
outperforms MosaicOS [73] in mAP and mAPr, without using their multi-stage
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mAPmask mAPmask
r

Box-Supervised [73] 22.6 12.3
MosaicOS [73] 24.5 (+1.9) 18.3 (+6.0)

Box-Supervised (Reproduced) 22.6 12.3
Detic (default classifier) 25.1 (+2.5) 18.6 (+6.3)

Box-Supervised (CLIP classifier) 22.3 14.1
Detic (CLIP classifier) 24.9 (+2.6) 20.7 (+6.5)

Table 14: Standard LVIS compared to MosiacOS [73]. Top block: results quoted
from MosiacOS paper; Middle block: Detic with the default random intialized and
trained classifier; Bottom block: Detic with CLIP classifier.

mAPbox mAPbox
r mAPbox

c mAPbox
f

Box-Supervised 31.7 21.4 30.7 37.5
Detic 32.5 26.2 31.3 36.6

Table 15: Detic applied to Deformable-DETR [79]. We report Box mAP on full
LVIS. Our method improves Deformable-DETR.

training and mosaic augmentation. Our relative improvements over the baseline
are slightly higher than MosiacOS [73]. We highlight our training framework is
simpler and we use less additional training data (Google-searched images).

J Generalization to Deformable-DETR.

We apply Detic to the recent Transformer based Deformable-DETR [79] to study
its generalization. We use their default training recipe, Federated Loss [76] and
train for a 4× schedule (∼48 LVIS epochs). We apply the image supervision to
the query from the encoder with the max predicted size. Table 15 shows that
Detic improves over the baseline (+0.8 mAP and +4.8 mAPr) and generalizes
to Transformer based detectors.

mAPmask mAPmask
IN-L mAPmask

non-IN-L

Box-Supervised 30.2 30.6 27.6
Max-size 32.4 33.5 28.1

mAPmask mAPmask
CC mAPmask

non-CC

Box-Supervised 30.2 30.1 29.5
Max-size 30.9 31.7 28.6

Table 16: mAP breakdown into classes with and without image labels. Top:
Detic trained on ImageNet. Bottom: Detic trained on CC. Most of the improvements are
from classes with image-level labels. On ImageNet Detic also improves classes without
image labels thanks to the CLIP classifier.
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Datasets mAPbox mAPbox
novel mAPFixed mAPFixed

novel

Box-Supervised 30.2 16.4 31.2 18.2
Detic 32.4 (+2.2) 24.9 (+8.5) 33.4 (+2.3) 26.7 (+8.5)

Table 17: mAPFixed evaluation. Middle: the original box mAP metric used in the
main paper. Right: the new box mAPFix metric. Our improvements are consistent
under the new metric.

K Improvements breakdown to classes

Table 16 shows mAP breakdown into classes with and without image labels for
both the Box-Supervised baseline and Detic. As expected, most of the improve-
ments are from classes with image-level labels. On ImageNet, Detic also improves
classes without image labels thanks to the CLIP classifier which leverages inter-
class relations.

L mAPFixed evaluation

Table 17 compares our improvements under the new mAPfix proposed in Dave
et al. [8]. Our improvements are consistent under the new metric.

M Image Attributions

License for the images from OpenImages in Figure 5:

– “Oyster”: Photo by The Local People Photo Archive (CC BY 2.0)
– “Cheetah”: Photo by Michael Gil (CC BY 2.0)
– “Harbor seal”: Photo by Alden Chadwick (CC BY 2.0)
– “Dinosaur”: Photo by Paxson Woelber (CC BY 2.0)


