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A More Implementation Details of Point-wise Feature
Extraction.

For point-wise feature extraction (cf. Sec. 3.1), we employ two backbones with
the same architectures to capture point-wise feature maps FXc and FYo from
the object observation and its CAD model, respectively.

For each branch, we firstly quantify the point set of the input object, attached
with RGB values, into 64 × 64 × 64 voxels; point coordinates and RGB values
of points within a same voxel are averaged, resulting in a 6-dimensional vector.
The volumetric input with a size of 64×64×64×6 is then fed into the backbone,
which is constructed based on 3D Sparse Convolutions [2]. Fig. 1 illustrates the
detailed architecture of the backbone, where network specifics are also given. As
shown in the figure, the backbone stacks 8 convolutional layers and 4 pooling
layers, point-wise features are interpolated from the convolutional feature map
via a Tensor-to-Point module [3]. To enrich the features, we aggregate multi-
scale point-wise features from 4 intermediate feature maps as the outputs of the
backbone.
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Fig. 1. An illustration of the architecture of backbone.
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B More comparisons with other methods.

We report results on the metrics of both ADD-S AUC and ADD-S < 2cm for
YCB-Video dataset [1] to compare with the prior works [4–7]; however, those
metrics w.r.t ADD-S are too relaxed to reflect the actual errors of poses, as
verified in Fig. 2, where some predictions with small values of ADD-S/ADD(S),
e.g., ADD-S < 2 cm, yet impose large pose errors to the ground truths. We
thus include the results on the metric of n◦m cm, which denotes mean Average
Precise (mAP) of objects with rotation error less than n◦ and translation error
less than m cm, in Table 1, and visualize the curves of Average Precision (AP)
versus different thresholds of rotation and translation errors, respectively, both of
which indicate that our DCL-Net outperforms the existing methods by a larger
margin in the regime of high precision, especially the rotation estimation.

Visualization

Pose Error 
(rotation/translation) 9.5° / 1.2cm 

ADD-S / ADD(S) 0.002 / 0.006

12.0° / 0.9cm 

0.002 / 0.005

8.0° / 1.0cm 

0.003 / 0.005

Fig. 2. Visualization of examples with small ADD-S / ADD(S) and large pose errors on
YCB-Video dataset [1]. Point sets (green) denote object CAD models transformed by
ground truth poses, while point sets (red) denote those transformed by the predicted
ones.

Table 1. Quantitative comparisons on different evaluation metrics for YCB-Video
dataset [1].

DenseFusion [6] PVN3D [5] FFB6D [4] DCL-Net

ADD-S AUC 93.1 95.5 96.6 96.6
ADD-S < 2 cm 96.8 97.6 99.2 99.0

2◦2 cm 19.4 14.6 22.8 38.9
5◦5 cm 49.1 55.0 64.2 65.2
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Fig. 3. Curves of average precision (AP) versus different thresholds of rotation and
translation errors, respectively, on YCB-Video dataset [1].
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