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1 Supplementary Results

1.1 Detection Performance on the Test Set

Due to the lack of pose information on the test set, we do not provide related
results in the main paper. Here we show the results of our pose-free version in
Tab. 1. We can observe conclusions similar to those on the validation set. Our
method shows obvious superiority over previous methods even without precise
pose information. Furthermore, we can expect a more significant improvement
if ego-motion is available. We will also attempt to extend our method to other
datasets that satisfy this requirement, such as nuScenes and Waymo.

Table 1. APy results on the KITTI test set.

APSD IOUZ 0.7 % APBEV IOUZ 0.7 %
Methods Venue Easy Mod. ( He)lrd Easy Mod. (Ha)rd
MonoDIS [21] ICCV 2019 10.37 7.94 6.40 17.23 13.19 11.12
M3D-RPN [1] ICCV 2019 14.76 9.71 7.42 21.02 13.67 10.23
D4LCN [5] CVPR 2020 16.65 11.72 9.51 22.51 16.02 12.55
MonoPair [4] CVPR 2020 13.04 9.99 8.65 19.28 14.83 12.89
SMOKE [12] CVPRW 2020 14.03 9.76 7.84 20.83 14.49 12.75
PatchNet [15] ECCV 2020 15.68 11.12 10.17 22.97 16.86 14.97
RTM3D [10] ECCV 2020 14.41 10.34 8.77 19.17 14.20 11.99
IAFA [26] ECCV 2020 17.81 12.01 10.61 25.88 17.88 15.35
MoVi3D [20] ECCV 2020 15.19 10.90 9.26 22.76 17.03 14.85
MonoDLE [16] CVPR 2021 17.23 12.26 10.29 24.79 18.89 16.00
CaDDN [17] CVPR 2021 19.17 13.41 11.46 27.94 18.91 17.19
MonoFlex [25] CVPR 2021 19.94 13.89 12.07 28.23 19.75 16.89
MonoRCNN [19)] ICCV 2021 18.36 12.65 10.03 25.48 18.11 14.10

GUPNet [11] ICCV 2021 20.11 14.20 11.77 - - -
DFR-Net [27] ICCV 2021 19.40 13.63 10.35 28.17 19.17 14.84
Kinematic3D [2] ECCV 2020 19.07 12.72 9.17 26.69 17.52 13.10
DIfM w/o pose - 22.94 16.82 14.65 31.71 22.89 19.97

1.2 Detection Performance of Other Classes

Considering the limited samples of pedestrians and cyclists on KITTI, its perfor-
mance is empirically unstable. So we mainly compare the detection performance
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of cars previously. Here, we also provide related results in Tab. 2 for reference.
It can be seen that our method also achieves competitive results, especially on
the detection of cyclists. For the detection of pedestrians, our method is only
a little inferior to GUPNet [14]. We suspect the reason is that the detection
of small objects can be hard for BEV-based methods. From this perspective,
our method achieves better performance than CaDDN, which follows a similar
detection pipeline.

Table 2. AP, results of other classes on the KITTTI test set.

Ped@AP3p IoU> 0.5 (%) Cyc@AP3p IoU> 0.5 (%)
Methods Venue Easy Mod. Hard Easy Mod. Hard
M3D-RPN [1] ICCV 2019 4.92 3.48 2.94 0.94 0.65 0.47
D4LCN [5] CVPR 2020 4.55 3.42 2.83 2.45 1.67 1.36
MonoPair [4] CVPR 2020 10.02 6.68 5.53 3.79 2.12 1.83
MoVi3D [20] ECCV 2020 8.99 5.44 4.57 1.08 0.63 0.70
MonoDLE [16] CVPR 2021 9.64 6.55 5.44 4.59 2.66 2.45
CaDDN [17] CVPR 2021 12.87 8.14 6.76 7.00 3.41 3.30
MonoFlex [25] CVPR 2021 9.43 6.31 5.26 4.17 2.35 2.04
GUPNet [14] ICCV 2021 14.72 9.53 7.87 4.18 2.65 2.09
DFR-Net [27] ICCV 2021 6.09 3.62 3.39 5.69 3.58 3.10
Kinematic3D [2] ECCV 2020 - - - - - -
DfM w/o pose - 13.70 8.71 7.32 8.98 5.75 4.88

1.3 Latency of Constructing Cost Volume

In the main paper, we mentioned that although cost volume construction becomes
more complicated than that in the binocular system, it is overall achieved with
matrix multiplication. The additional complexity increases the latency of this
process from 0.003s to 0.012s, which can be ignored for the overall inference
latency of 0.32s. Although our framework does not achieve real-time efficiency, it
has performed better than similar baselines such as CaDDN (0.63s) and Pseudo-
LiDAR based methods (about 0.4s). In addition, we can reduce the number of
candidate depth levels to optimize the network efficiency while affecting little
performance. We will also improve our framework in this aspect in the future.

Table 3. Ablation study for location-aware monocular compensation.

AP3p IOU> 0.7 APgpgpyv IOU> 0.7
Methods Easy Mod. Hard Easy Mod. Hard
stereo baseline 21.47 15.32 13.83 29.22 21.22 19.51
w/ shared weights 22.92 15.99 13.85 31.31 23.00 20.22
group-wise fusion 23.49 16.52 14.38 33.00 23.91 21.06
point-wise fusion 26.61 18.82 16.47 36.16 26.09 23.17
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1.4 Supplementary Ablation Studies

Alternative Monocular Compensation Methods We also attempt alter-
native methods to fuse monocular and stereo features. The final version in the
main paper is both interpretable and effective. To have a more comprehensive
comparison, we also show the results of other alternative designs for monocular
compensation in Tab. 3. First, we use a simple convolution layer to directly
compress these two feature volumes to one, i.e., compress from 2D channels
to D. This implementation is simple while it essentially uses shared weights to
aggregate these two volumes across the entire scene. As analyzed in the paper,
we need to fuse adaptively because different locations can rely on monocular or
stereo estimation differently. Then we attempt to use group-wise convolution to
achieve this. Finally, our final version, generating a point-wise weight first and
then using it to guide the fusion, is the most effective design. It is also in line
with our theoretical analysis.

Table 4. Ablation study for depth loss design.

AP3p IOU> 0.7 APpryv 1I0U> 0.7
Methods Easy Mod. Hard Easy Mod. Hard
Mono Only w/ CE 20.06 15.30 14.05 27.84 21.78 19.96
Stereo Only w/ CE 21.47 15.32 13.83 29.22 21.22 19.51
Mono+Stereo w/ CE 26.61 18.82 16.47 36.16 26.09 23.17
focal w/ gamma=2 27.27 18.76 16.55 35.29 25.08 22.11
balanced w/ fg:bg=>5:1 27.40 19.11 16.58 36.28 26.18 23.09
balanced + focal 29.27 20.22 17.46 38.60 27.13 24.05

Table 5. Depth estimation errors when using different loss designs. Err. Med. denotes
the average median of depth errors and other metrics evaluate the ratio of points with
errors larger than a specific threshold. Foreground (Fg in the table) metrics are evaluated
by averaging object-level results. Objects with less than 5 ground-truth LiDAR points
are ignored.

Methods Err. Med.] >0.2m] >0.4m] >0.8m] >1.6m|
Fg/All (m) | Fg/All (%) | Fg/All (%) | Fg/All (%) | Fg/All (%)

Mono Only w/ CE 5.86/1.15 | 91.2/75.6 | 83.9/64.4 | 746/53.1 | 65.8/43.3
Stereo Only w/ CE 3.33/0.58 | 88.6/68.5 | 79.3/52.4 | 66.6/36.0 | 51.9/23.0
Mono+Stereo w/ CE | 2.60/0.48 | 86.3/66.8 | 75.0/50.2 | 60.0/33.4 | 43.9/20.7
focal w/ gamma=2 2.50/0.48 | 86.3/67.0 | 75.2/50.1 | 60.4/33.2 | 44.2/20.6
balanced w/ fg:bg=5:1 | 2.12/0.51 | 83.2/67.7 | 70.2/51.3 | 53.6/34.6 | 35.7/2L.7
balanced + focal 2.09/0.50 82.8/67.2 69.7/50.9 53.1/34.2 35.4/21.3

Design of Depth Loss Our baseline uses cross-entropy loss for depth supervi-
sion. Since our target is 3D object detection, we should pay more attention to
foreground points. Therefore, following CaDDN [17], we use focal design and bal-
anced weights to facilitate the depth estimation from this aspect. We show their
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effectiveness in Tab. 4 and 5. To have a more intuitive comparison, we also show
related results of monocular and stereo only baselines. We can see these designs
tailored to depth contribute a lot to the final performance improvement, which
further shows the crucial role of depth estimation in monocular 3D detection.

Table 6. Our baseline performs much worse than its binocular counterpart. The key is
the accuracy of depth distribution.

APs;p IOU> 0.7 APgpv IO0U> 0.7
Methods Easy Mod. | Hard Easy Mod. | Hard
Binocular Baseline 80.62 61.88 54.92 90.26 73.63 66.24
w/ gt depth dist. 85.41 70.07 62.96 93.82 82.24 74.89
DfM Baseline 17.41 12.93 11.60 24.78 18.21 16.06
w/ gt depth dist. 76.70 63.01 55.74 87.47 76.62 69.09

1.5 Oracle Analysis for Baseline Model

When we build our baseline framework at the beginning (w/o data augmentation
and monocular compensation), it turns out that the detection performance drops
precipitously compared to the binocular baseline counterpart. However, if we
replace the predicted depth distribution Dp with its target Dp, our baseline can
be directly lifted to a level comparable with the binocular case. Although this
assumption is a little idealistic, it still indicates that the key problem of this
large gap is the accuracy of depth estimation. Therefore, we focus on improving
the depth-from-motion component in the main paper and propose two effective
designs.

1.6 Qualitative Results

We show detection results qualitatively in Fig. 1. For each sample, we visualize
2D detection and 3D detection results from the front view on the first two rows
and plot 3D detection results in the perspective view on the third row. For the
perspective view, we also reconstruct the point clouds with our estimated depth
and paint them with corresponding colors. Please see qualitative results for 3D
detection from consecutive frames in the supplementary demo video.

2 Theoretical Analysis for General Two-View Cases

We have discussed the geometry relationship in different two-view cases in the
main paper, especially the two simplest cases. Although the cases with ego-motion
and object motions are not important for the basic conclusion and our technical
design, we still provide a basic analysis here for integration. It can also provide
guidance for future work in this direction.
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Fig. 1. Qualitative detection results from the front view and perspective view.

(a) Binocular Setting (b) Two Views in Parallel (c) General 2-View Case (d) Moving Objects
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Fig. 2. Multi-view geometry for object depth estimation in the (a) binocular, (b) parallel
two-view, (c¢) general two-view system and (d) that for moving objects.
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2.1 General Two-View Case

Following the basic analysis for the binocular system and two-parallel-view case,
we extend the geometry analysis to the most general one without considering the
motions of target objects: The pose transformation between two views consists of
both translation and rotation (Fig. 2-(c)). Similar to the analysis for two parallel
views, what we have are two projection relationships and the pose transformation:

(51 f 0 Cy Z1

v | D=0 f Cy Y1 s (1)
1 001 Dy

U f0cy T2

V2 -D2 = 0 f Cy Y2 ) (2)
1 001/ \D,

To X1

Yo | = Raxs | y1 | +t3x1- (3)
Do Dy

Represent x1, 2, y1,y2 with Dy, Do, and substitute them in the transformation
equation, and we can derive D and Ds:

uy — ¢ vl —

= Dy = (r3g ———2 + rzp—

f
£ A3D, + Bs,

C'U
+ T‘33)D1 + t3
f (4)

where 7;; denotes the i-th row, j-th column element of the rotation matrix R.
Similarly, we can define:

7‘11U1;CU+7‘121]1}CU+7’13éA17t1éB1 (5)
Uy — ¢y V] — ¢y
21 lf + 7o lf + 193 = Ag,ta £ By (6)
Then:

o U2 — Cy U2 — Cy
Dy = (B1 - 7 Bs)/( 7 Az — A1) (7)

Vg — Cy Vg — Cy
Dy = (B2 — 2f Bs)/( 2f Az — Az) (8)

When there is no rotation, setting R to the identity matrix, it can also be
reduced to the case with two views in parallel.

For this most complicated relationship, we can also understand it from the
previous two cases. We first re-written Eqn. 7 as follows:

by [ty — #255ts) (©)
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The numerator is the same with Eqn. 3 in the main paper while the denom-
inator is coupled with some rotations. Here we can also substitute % and

#5 with - and 4 (both correspond to rotations).

After primarily interpreting the result, let us recap Eqn. 7, which is more clear
for implementation. Here, if we would like to estimate depth directly, we need
to predict uq, ue, v1, and other values are constant given by the dataset. We can
further transform the prediction of us to u; + Au to simplify the learning target
and turn to address the correspondence problem. However, the prediction of u
and vy can also be inaccurate, so we can first use ground truths (target values
of u; and v1) to learn Au to observe whether it can converge or not. It turns
out that even the task has been simplified a lot, it is still quite difficult from our
preliminary experimental attempts. This is what we mentioned in the main paper:
In this case, disparity computation involves several rotation coefficients and
additional dimensions of absolute position vy. The cumulative errors caused by
the entanglement of multiple estimations make the direct derivation intractable.

2.2 Moving Objects

Up to now, all the formulation assumes the object is static. However, there are
many moving objects in the open world. Next, we will discuss what will happen
if we consider the moving objects.

Let us consider the 3D center of a car (Fig. 2-(d)): it can only drift (both
in 3D and 2D) when the car has a translation. Rotation does not affect its 3D
location and thus does not affect its 2D projection. Therefore, for object centers,
the only difference in the previous relationship (Eq. 9) is just that the object
translation should be added into the translation vector t3.1. However, this can
be different for other 3D points. For example, the points on the object surface
can rotate with the object’s rotation, which can be hard to formulate with our
current modeling.

The basic analysis shows that moving objects can involve local warping to
monocular images, in contrast to global warping caused by view change. Due to
the complexity of different objects’ motion and the domain gap between the 3D
targets and 2D inputs, it is hard to directly estimate motion from only a pair of
images, not to mention involving the estimation errors in the direct computation
of depth.

From the perspective of our framework in the main paper, a promising
direction is to model the local warping when constructing stereo cost volume
and attempt to remove this factor for stereo matching. More annotations such as
complete tracklets may be required for better performance.

3 Implementation Details

In the main paper, we have introduced our overall framework and detailed our
proposed two key components. This supplemental section elaborates on the
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specific network architectures of other basic modules and presents the design
related to auxiliary tasks except for 3D detection.

Our framework is motivated by DSGN [3] and LIGA-Stereo [7]. We will also
release our code afterward for reproducing our experiments and showing these
details more conveniently.

3.1 Network Architecture

2D Feature Extraction Given the input image-pair (Iy, I;—s¢), we use a shared
2D backbone to extract their features (F;, Fi—s¢). The backbone is a modified
ResNet34 [9] with spatial pyramid pooling (SPP) [8] module following DSGN [3].
The channels of conv2 — 5 in ResNet are set to {64,128,128,128}. We append a
small U-Net [18] on top to upsample these SPP features to get the full resolution
Fi for high-quality stereo matching while use 2-layer convolution to extract the
semantic feature Fgep, [7]. The final number of channels are set to 32 for both
Fi and Feem.

2D Detection Head We construct five-level FPN [11] by appending multiple
stride-2 convolution layers on the SPP feature of frame ¢. Then we attach a 2D
detection head for each level following ATSS [24]. Each position only has one
anchor box and the anchor box sizes on each level are set to {32, 64, 128, 256,
512}.

2.5D Backbone After constructing the monocular and stereo cost volume,
we filter each with a 3D residual block and a 3D hourglass network separately.
The residual block consists of two 3D convolution layers and a skip connection
as the basic block in ResNet. The 3D hourglass network downsamples the 3D
feature with two stride-2 layers and then upsamples them with skip connections.
We set the 3D kernel size to 3x3x3 by default. While all these operations are
3D convolutions, we call this component as 2.5D backbone because the spatial
quantization is based on the 2.5D coordinates, i.e., following the plane-sweep
approach, which is different from the voxelization in the 3D space.

3D Backbone and 3D Head With the fused stereo feature, the depth head
applies a simple 3D convolution layer followed by softmax to predict the depth
distribution. We further apply the outer product to the semantic feature Fe,,
and the depth probability volume Dp, and combine it with the stereo feature for
sampling the voxel features used for subsequent 3D detection. The voxel feature is
then filtered with a 3D convolution layer and downsampled along the height axis.
We transform this feature by merging its height and feature dimension to get the
bird-eye-view (BEV) feature. A 2D hourglass network with 2-layer downsampling
and upsampling is applied on top to get the input of 3D heads. Finally, we
append two layers for the classification and regression branch separately and use
one layer for each task: classification, direction classification and regression. We
follow the rotation encoding scheme in SECOND [23], and use kernel size 3x3
by default for all the layers except the final one for direction classification.
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3.2 Training Loss

In summary, we use a focal loss Lgepep, for depth supervision following [17], an
auxiliary 2D detection loss Lop and a 3D detection loss L£3p composed of focal
loss for classification, regression L1 loss, IoU loss and direction loss for localization
following [7]. To make the paper self-contained, we briefly introduce them as
follows.

First, the baseline cross-entropy depth loss is:

1 d* —d(w
Larn = 5= 02 [~ mast - g oogDo . vw)]. - (10)

where Ng; is the number of valid pixels with depth ground truth d*, u,v,w
denotes the position in the stereo volume, Ad is the divided depth interval as in
the main paper.

We upgrade it with balanced weights and focal design to make it more
concentrated on foreground points. The foreground and background weight of
depth estimation is set to 5 and 1, and ~y is set to 2 in the focal loss. Here we
regard the regions in the annotated 2D bounding boxes as foreground.

2D detection loss Lop consists of three parts: focal loss for classification Lglg,
GIoU loss for localization £57°V and cross-entropy loss for centerness £5%,. The
weights of them are set to 1.0, 2.0, 1.0 respectively.

3D detection loss L£3p has four components: focal loss for 3D classification
Eglg, regression L1 loss £37 and IoU loss L19Y for localization, and cross-entropy
loss for direction classification £4%. Except for IoU loss, the others are devised
following SECOND [23]. The IoU loss is defined as the average rotated IoU loss
between the predicted boxes and ground truth boxes. The weights of them are
set to 1.0, 0.5, 1.0, 0.2. In addition, we keep the original imitation loss L;,, in
LIGA-Stereo [7] to learn better geometric information. We keep its weight to 1.0
and obtain a little performance gain of about 1 AP in our baseline.

3.3 Training Details

Detection Range As for the detection range, we set [2m, 59.6m] for Z (depth)
axis, [—30m, 30m] for X axis and [—1m, 3m]| for Y (height) axis to avoid more
false positives too far away. The depth range is divided into 288 levels and the
voxel size is set to (0.2m, 0.2m,0.2m).

Training Parameters For all the experiments, except ResNet backbone pre-
trained on ImageNet, we trained randomly initialized networks from scratch
following end-to-end manners. The network is trained using AdamW [13] opti-
mizer, with 81 = 0.9, B2 = 0.999. We use 8 GPUs with 1 training sample on each
to train the model for 60 epochs. The learning rate is set to 0.001 for the first 50
epochs and then reduced to 0.0001. The weight decay is set to 0.0001.

Data Augmentation As presented in the main paper, we can apply any kind
of data augmentation to input images with the canonical space as the bridge. In
practice, we exploit image flip and resize augmentation in turn, and the resize
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range is set to [0.95,1.05]. Subsequently, we fix the input image size to 320x 1248
by cropping the upper part which does not contain any object. Note that we
only apply the corresponding augmentation in 3D space for flip, and instead
manipulate the intrinsic matrix for image rescaling and cropping.

3.4 Supplementary Details in Pose-Free DfM

View Synthesis When computing the self-supervised loss for pose learning
in the pose-free DfM, the main paper mentioned that we need to synthesize the
frame ¢ with frame ¢ — §t. Here we detail the synthesis procedure.

With the dense depth estimation ﬁh we can obtain a stereo grid by repro-
jecting the 2D grid of frame ¢ with the intrinsic matrix. Then we warp these
positions to the frame ¢t — §t with the predicted pose (t,q) and project them
to the image plane to sample corresponding pixels. The sampled result is the
expected synthesized I;_s:_,¢. Note that we also apply the pose-based warping in
the canonical space similar to the construction of cost volume in this procedure.
Loss Formulation We also provide the specific formulation of the appearance
matching loss £,, and the depth smoothness loss £; mentioned in the main paper
to make this paper self-contained:

«
Lot Li-st—t) = 5 (1 = SSIM(Iy, Le—st~¢)) + (1 = @)l = Le—ge—el | (11)

Lo(Dy) = 18, Dyle™ % 4[5, Dy[e™ 1% (12)
L, is formed by the Structural Similarity (SSIM) [22] term and the L1 pixel-wise
loss term. L is used to regularize the predicted depth map D; on texture-less

low-image gradient regions (with small §, and ¢,). We also follow [6] on auto-mask
techniques and hyper-parameter settings (o = 0.85 and Ay = 0.001).

4 Supplementary Video

We attach a video in the supplementary material. This video first combs out our
method’s general logic and specific content so that readers can understand or
recap it quickly. The end shows some demo videos of the 3D detection results
predicted by our model, from the perspective view and 3D view, respectively.
It supplements the main paper on the qualitative results of consecutive-frame
images. The video is compressed in the supplementary file. Please see the full
version provided at https://github.com/Tai-Wang/Depth-from-Motion.
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