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1 Prototype Selection in PGM

The prototype generation module (PGM) selects the prototypes by minimizing
reconstruction errors in two feature spaces and the discrepancy of representations
w.r.t. the prototypes as defined in Eq. 2 in the main manuscript. In this section, a
solution is given through a variant of matching pursuit [4], which is an effective and
efficient approach. For the sake of clarity, we quickly review the notations in the
main manuscript. The features of N instances are Ft = {f t

i }Ni=1 and Fs = {fs
i }Ni=1

in the feature spaces of the teacher and the student detectors, respectively. The

Gt = {gt
k}

K

k=1 and Gs = {gs
k}

K
k=1 are the features of K prototypes in the two

feature spaces, respectively. Thus, the objective in Eq. 2 in the main manuscript
can be rewritten as:

L = ||Ft −GtWt||+ ||Fs −GsWs||+ λ||Ws −Wt||22

=

N∑
i=1

||f t
i −

K∑
k=1

gt
kw

t
k,i||22 +

N∑
i=1

||fs
i −

K∑
k=1

gs
kw

s
k,i||22

+ λ

N∑
i=1

K∑
k=1

(wt
k,i − ws

k,i)
2.

(1)

(gt
k, g

s
k) ∈ {(f t

i ,f
s
i )}Ni=1, ∀k = 1, · · · ,K.Wt = {wt

k,i}K×N andWs = {ws
k,i}K×N

are coefficient matrices as representations of instances w.r.t. the prototypes. In
PGM, prototypes are selected in a greedy manner that only one prototype is
selected at each step by minimizing Eq. 1. Concretely, we follow the definition of
residuals rtn,i and rsn,i as the Eq. 4 of the main manuscripts as follows:

rtn,i≜f t
i −

n∑
k=1

gt
kw

t
k,i, rsn,i≜fs

i −
n∑

k=1

gs
kw

s
k,i, (2)
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where n is number of selected prototypes after n steps. Thus, at the (n+ 1)th

step, the prototype can be selected by minimizing Ln+1, where we expand the
Eq. 4 in the main manuscripts as follows:

Ln+1 =

N∑
i=1

||rtn+1,i||22 +
N∑
i=1
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(3)

which is the objective L in the (n+1)th iteration. The optimal wt
n+1,i and ws

n+1,i

can be calculated by the derivatives:

∂Ln+1

∂wt
n+1,i

=
∂||rtn+1,i||22
∂wt

n+1,i

+
∂λ(wt

n+1,i − ws
n+1,i)

2
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= −2
〈
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〉
+ 2||gt

n+1||2wt
n+1,i

+ 2λ(wt
n+1,i − ws

n+1,i),

(4)

where the ⟨·, ·⟩ is the inner product of two vectors. Let the derivative ∂L
∂wt

n+1,i
be

zero and we have

wt
n+1,i =

〈
rtn,i, g

t
n+1

〉
+ λws

n+1,i

λ+ ||gt
n+1||22

. (5)

Similarly, for ws
n+1,i, we have

ws
n+1,i =

〈
rsn,i, g

s
n+1

〉
+ λwt

n+1,i

λ+ ||gs
n+1||22

. (6)

We simplify the notations of the inner-product between the residual and the pro-
totype as ∆s

n ≜
〈
rsn,i, g

s
n+1

〉
and ∆t

n ≜
〈
rtn,i, g

t
n+1

〉
in TS-space. By considering

wt
n+1,i and ws

n+1,i in both Eq. 5 and Eq. 6, they can be calculated w.r.t. gt
n+1

and gs
n+1 as followings:
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(7)

Therefore, by substituting wt
n+1,i and ws

n+1,i into Eq. 3, the (n+1) prototype can
be selected with the minimum value of Ln+1. This can be implemented efficiently
by parallel computation on GPUs. The above process will be iterated by K times
to obtain K prototypes. The overall algorithm for selecting prototypes in PGM
is summarized in Alg. 1 as in the main manuscript.
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Notice by setting λ = 0 that means to ignore the representation similarity of
instances w.r.t the prototypes in TS-space, the calculations of the optimal wt

n+1,i

and ws
n+1,i in Eq. 7 can be much simplified as followings:

wt
n+1,i =

∆t
n

||gt
n+1||22

, ws
n+1,i =

∆s
n

||gs
n+1||22

, (8)

which are indeed the relations, i.e., the inner product, between the residuals and
the prototypes. In particular, the coefficient of w0,i is the relation between the
prototypes and the other instances.

2 Implementation Details and Experiments

In this section, we show more implementation details, though codes are appended
in the supplemental assets. Besides, we show more experiments and analysis of
the proposed method.

2.1 More Implementation Details

We implement our distilling framework through the public benchmark MMDe-
tection [1] based on PyTorch3. The Faster R-CNN [6] and RetinaNet [3] are
well-implemented in MMDetection and used in our experiments. For the VOC
dataset, we train the bare student and teacher detectors from the ImageNet [7]
pre-trained models. For the COCO dataset, we directly use the public well-trained
models from the Model Zoo [1] of MMDetection. Then, the teacher and student
detectors are trained by minimizing the objective of knowledge distillation in Eq.
9 in the main manuscript. For various foreground classes and feature maps of
multiple resolutions, we separately apply the PGM for each class and each feature
map to be distilled, and so is the RDM. The code is available and appended in
the supplemental materials.

2.2 More Experiments and Analysis

Prototypes analysis. In Fig. 1, we illustrate some prototypes of the class
aeroplane, car and person as well as some instances with their distilling weights
σ defined in Eq. 8 and predicted confidence of the teacher detector. Although
some of the detection errors are predicted by the high confidence of the teacher
detector, the distillation weights are relatively low by measuring the discrepancy
of representations w.r.t. the prototypes. Hence, the noisy knowledge is hard to
be transferred to the student detector. The quantitative analysis of the noisy
knowledge transferring, i.e., the transferring ratios of the true positives and false
positives, is illustrated in Table 9 in the main manuscripts.

Analysis of noisy knowledge transferring. We find that although some
of the detection errors are predicted by the teacher detector with high confidence,

3 https://pytorch.org
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σ = 0.40  (p = 0.98) σ = 0.49  (p = 0.94)σ = 0.58  (p = 0.99)

Prototypes Other Instances

σ = 0.88  (p = 0.99) σ = 0.71 (p = 0.97)

σ = 0.52  (p = 0.84) σ  = 0.60  (p = 0.84)

σ = 0.93  (p = 0.99)

σ  = 0.96  (p = 1.0)

σ = 0.94  (p = 1.0)

Fig. 1. Illustration of the prototypes (left) as well as other instances (right) with the
distilling weights σ in Eq. 8 in the main manuscript and the predicted confidence p of
the teacher detector.

Table 1. Noise analysis on different distillation methods. The higher TRTP, the more
useful knowledge transferred. The higher TRFP, the more noisy knowledge eliminated.

Method FGFI [8] Mimicking [2] RKD† [5] Ours

TRTP 0.08 0.05 0.52 0.60
TRFP 1.96 1.89 2.01 2.20

the distillation weights are relatively low by measuring the discrepancy. Hence, the
noisy knowledge is hard to be transferred to the student detector. The visualization
of prototypes and the qualitative analysis can be found in supplemental materials.
Furthermore, we also measure the distillation performance by the knowledge
transferring ratio as shown in Table 1 for quantitative analysis. The transferring
ratios of true positives and false positives are measured as TRTP and TRFP in
Eq. 9.

TRTP =

∑
i

∑
b̃i,j∩bi>τ

(pkdi,j − psi,j)∑
i

∑
b̃i,j∩bi>τ

(pti,j − psi,j)
, TRFP =

∑
i

∑
b̃i,j∩bi<τ

(psi,j − pkd,i,j)∑
i

∑
b̃i,j∩bi<τ

(psi,j − pti,j)
. (9)

pti,j , p
s
i,j and pkdi,j are the confidences of the teacher, the base student and

the distilled student detector for the predicted box b̃i,j , respectively. bi are the

ground truth boxes of the i-th image and b̃i,j ∩ bi means the maximum IoU

between the b̃i,j and each box in bi. τ is the IoU threshold and set to 0.5. The
higher TRTP, the more useful knowledge of the true positives (TP) from the
teacher detector is transferred. The higher TRFP, the more noisy knowledge of
the false positives (FP) from the teacher detector is eliminated.
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In Table 1, we show that the proposed method achieves the highest TRTP

and TRFP on PASCAL VOC dataset. Notice that the TRFP is larger than 1.0,
which means there are many false positives predicted by the teacher leading to a
lower denominator.

Further fine-tuning the student without the distillation loss. Since the
proposed distilling method is trained based on detectors being pre-trained from
the task-relevant datasets, e.g., the PASCAL VOC or COCO, the performance
might be improved due to more training iterations by minimizing the detection
loss Ldet rather than distilling loss in Eq. 10. To dissipate such suspicion, we set
the weights α1 = α2 = α3 = 0 to make the global and local knowledge distilling
loss to zero and train the detector by only minimizing the Ldet. The same settings
are applied, e.g., the learning schedule, as in knowledge distillation. We find that
the mAP (81.4) is very closed to the bare student detector (81.3). However, the
proposed method shows 82.9% mAP on the VOC dataset, which proves that the
performance gain is obtained by the proposed distilling algorithm rather than
simply fine-tuning the student with more epochs.

Analysis on training efficiency. Generating the prototypes in PGM is
a relatively time-consuming process in complexity of O(NK) for each class. It
mainly consists of two steps: extracting the features of instances in TS-spaces and
applying the Alg.1 in the main manuscript to select the prototypes. Many tricks
can be developed to improve the efficiency: (1) The features of instances in the
feature space of teacher detector can be extracted once and stored since the teacher
detector is unchanged when distilling the detector. (2) All the computations in
Alg. 1 in the main manuscript can be implemented efficiently by several parallel
matrix operations on GPUs. (3) The features of instances in the feature space of
student detector can be bootstrapped and updated per epoch, which shows little
harm for the distillation by referring to results in Table 5 in the main manuscript.
We evaluate the time consumed by the PGM, which will slight increase about
10% of the overall training process. It could be more efficient through more
delicate implementation e.g., selecting the prototypes on each class and feature
maps in parallel. Notice that the computational efficiency exactly remains the
same as the bare student detector when inference.
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