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Abstract. Image restoration algorithms such as super resolution (SR)
are indispensable pre-processing modules for object detection in low qual-
ity images. Most of these algorithms assume the degradation is fixed
and known a priori. However, in practical, either the real degradation or
optimal up-sampling ratio rate is unknown or differs from assumption,
leading to a deteriorating performance for both the pre-processing module
and the consequent high-level task such as object detection. Here, we
propose a novel self-supervised framework to detect objects in degraded
low resolution images. We utilizes the downsampling degradation as a
kind of transformation for self-supervised signals to explore the equiv-
ariant representation against various resolutions and other degradation
conditions. The Auto Encoding Resolution in Self-supervision (AERIS)
framework could further take the advantage of advanced SR architec-
tures with an arbitrary resolution restoring decoder to reconstruct the
original correspondence from the degraded input image. Both the rep-
resentation learning and object detection are optimized jointly in an
end-to-end training fashion. The generic AERIS framework could be
implemented on various mainstream object detection architectures with
different backbones. The extensive experiments show that our methods
has achieved superior performance compared with existing methods when
facing variant degradation situations. Code is available at this link.

Keywords: Self-supervised Learning, Computational Photography, Ob-
ject Detection

1 Introduction

High level vision tasks (i.e. image classification, object detection, and semantic
segmentation) have witnessed great success thanks to the large scale dataset

⋆ Corresponding author.

https://github.com/cuiziteng/ECCV_AERIS
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(a) (b)

Fig. 1: Illustration of scale variance bottleneck. (a): Tiny people are well detected
at high resolution while the large traffic sign is recognized in low resolution. (b):
Detection result on down-sampled MS COCO [35] dataset (down scale rate: 4)
with different noise level. Specifically, we up-scale the images with different ratio
(2, 3, 4) before detection. X-axis is up-scale ratio and Y-axis is mAP result of
CenterNet [64]. We also report the results on small, medium and large objects.

[10,35,14]. Images in these datasets are mainly captured by commercial cameras
with higher resolution and signal-to-noise ratio (SNR). Trained and optimized
on these high-quality images, high-level vision would suffer a performance drop
on low resolution [9,19,53] or low quality images [38,52,45,1,8,41].

To improve the performance of vision algorithms on degraded low resolution
images, Dai et al. [9] presented the first comprehensive study advocating pre-
processing images with super resolution (SR) algorithms. Other high-level tasks
like face recognition [66], face detection [2], image classification [55,38] and
semantic segmentation [53], also benefit from the restoration module to extract
more discriminate features.

Most existing enhancement methods, especially SR algorithms [3,60,59], as-
sume target images are from a known and fixed degradation model [13,36]:

t(x) = (x⊛ k) ↓s +n, (1)

where t(x) and x denote the degraded low resolution (LR) image and original
high resolution (HR) input respectively. k is the blur kernel while ↓s is the down-
sampling operation with ratio s. n is the additive noise. However, the performance
of these enhancement algorithms would decline severely when the real degradation
deviates from the assumption [18]. To make it worse, for machine perception
tasks, as shown in Fig 1b, higher resolution does not necessarily guarantee
a better performance in high level tasks. Like object detection, the optimal
SR ratio varies across the images due to the scale variance bottleneck [48,49],
there is a trade off that certain high level predictions are better handled at
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lower resolution and others better processed at higher resolution. As illustrated
in Fig 1a, though working well on individual tiny person at high resolution
(2666,1600), the detection method ignores the large traffic sign. On the contrary,
in low resolution (667,400) images, detecting network’s reception field could
observe more global context for large structure, at the cost of sacrificing the small
objects. Fig 1b also quantitatively demonstrates this bottleneck. The detection
performance does not necessary increases with super resolution ratio, especially
for large objects.

Instead of explicitly enhancing an input image with a fixed restoration module,
we exploit the intrinsic equivariant representation against various resolutions
and degradation. I know who I was when I got up this morning, but I think I
must have been changed several times since then.1. Either being small enough
to squeeze through the door or so big to shed a pool of tears, Alice should
be encoded with a equivariant representation to show who she is in the world.
Based on the encoded representation shown in Fig.2, we propose an end-to-end
framework for object detection in low quality images. To capture the complex
patterns of visual structures, we utilize groups of downsampling degradation
transformations under different downsampling rate, noise and degradation kernel
as the self-supervised signal [63,16].

During the training, we generate a degraded LR image t(x) from the origi-
nal HR image x through a random degradation transformation t. As shown in
Fig.2, to train the Encoder E to learn the degradation equivariant representa-
tion E(t(x)), we introduce an arbitrary-resolution restoration decoder (ARRD)
decoder Dr. ARRD implicitly decodes t to reconstruct the original HR data
x from the representation E(t(x)) of various degraded LR image t(x). If the
self-supervised signal is reconstructed, the representation should capture the
dynamics of how they change under different resolution and other degradation as
much as possible [7,44,63]. The nature of reconstructing HR data also allows us
to leverage the advance of the fast-growing SR research by directly using their
successful architectures.

On the encoded representation E(t(x)), we further impose an object detection
decoder Do to supervise the encoder E to encode the image structure relevant to
the consequent tasks. The object detection decoder Do performs the detection
task to get the object’s location and class. During inference, the target image is
directly passed through the encoder E and object detection decoder Do in Fig.2
for detection. Compared to pre-processing module based methods [46,19], our in-
ference pipeline is more computation efficient as we avoid explicitly reconstructing
the image details.

To cover the diverse degradation and resolutions, in real scenario, we generate
degraded t(x) by randomly sampling a transformations t according to practical
down-sampling degradation model [36,59]. As shown in Fig.2, the transformation
t is characterised by down-sampling ratio s, blur kernel k, and noise level n in
Eq.1.

Our contributions could be summarised as follows:

1 Chapter 5, Alice in Wonderland
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Fig. 2: A simple illustration of Auto Encoding Resolution in Self-supervision
(AERIS). Encoder E encodes images transformed under various self-supervised
signal into degradation equivariant representations (like Alice after drinking
””Drink me””). ARRD Dr implicitly decodes the self-supervised signal to recon-
struct the original image/transformation while detection decoder Do decodes the
representations for object detection task.

– We propose a novel framework, Auto Encoding Resolution in Self-supervision
(AERIS), to detect objects in degraded low resolution images by utilizing
the resolution and degradation clues as self-supervised signal. Specifically, we
learn the degradation equivariant representation that captures the dynamics
of feature representations under diverse resolutions and degradation types.
Our AERIS is generic and could be implemented on several mainstream
object detection architecture.

– AERIS method takes the strength of advanced super resolution (SR) re-
search by training an arbitrary resolution restoration decoder (ARRD) that
reconstructs the high resolution details. Furthermore, by optimizing the rep-
resentation learning and detection in a unified end-to-end training framework,
the representation preserves the intrinsic visual structure that is discrimina-
tive for detection.

– We evaluate our method on mainstream public dataset MS COCO [35] and
KITTI [15]. The experiment results also show that our method has achieved
SOTA performance on several degradation conditions.

2 Related Works

2.1 Single Image Super Resolution

Image restoration algorithms are intuitive solutions to handle degradation, here we
mainly introduce single image super-resolution (SISR), since the object detection
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task is sensitive to resolution, and the other low-level vision tasks (i.e. denoise,
deblur) also have connections with SISR task.

The very first CCN-based SR was proposed by Dong et al. [11] with a three-
layer neural network. Then Kim et al. [29] extended the depth of network to 20
layers with gradient clipping and residual learning. Batch normalization is later
identified to impose the negative effect on the SR reconstruction. By removing this
layer, EDSR [34] achieves SOTA in 2017. After ESDR, better SR architectures are
designed by integrating the successful deep learning techniques such as Laplacian
pyramid structure [30], dense connection [51], back projection [20], transformer
blocks [33] and so on. Besides designing sophisticated architecture, losses like
perceptual loss [26] and adversarial loss [31] are also demonstrated to improve
the SR reconstruction quality.

SR algorithms heavily rely on the assumption of degradation model and fixed
resolution. Much efforts are spent to relax the constraint. Not limited to a unfixed
up-sampling scale, like Hu et al. [24] first proposed Meta-SR to super-resolve
images with arbitrary scale factor. After that, LIIF [6] utilize implicit function to
solve this task, and FuncNet [40] further been proposed also for noise and blur
condition.

To deploy SR for real scenarios, blind SR methods assume the degradation
information is not known. One direction is to convert the problem into non-
blind SR by provide prior degradation information [62] or initially estimate the
degradation parameters [3]. However, the applied non-blind SR algorithm is
very sensitive to the error of the degradation estimation. Gu et al. [18] then
proposed to iterative correct the estimated degradation with an iterative kernel
correction (IKC) method. Without explicitly estimating degradation parameters,
Wang et al. [54] introduced a contrastive loss to design the degradation-aware
SR network based on the learned representations. Recently, Zhang et al. [59]
solved the general blind SISR by designing a practical model considering complex
degradation. This model has been demonstrated to cover the degradation space
of real images. Therefore, we adopt this practical model to synthesize various
degraded LR images as the self-supervised signal to train our model.

2.2 Image Restoration for Machine Perception

There is sufficient evidence that degraded scene would give negative impact on
high-level vision tasks [57,9,19,27]. As for resolution, Dai et al. [9] made the first
analyze on improving several vision tasks with SR as pre-process. Wang et al. [55]
analyzed the effectiveness of SR in image classification task while DSRL [53]
improved the low-resolution semantic segmentation with an additional SR block.
Shermeyer and Etten [46] evaluate the effectiveness of a SR pre-process step on
aerial image object detection. Recently, Haris et al. [19] jointly optimise object
detection loss along with SR sub-network [20] to improve detection performance.

Similarly, noise and blur’s effect on high-level vision have also been well-
studied. Hendrycks et al. [22] evaluate image classification robustness under
multiply degradation conditions including noise and blur. Kamann et al. [27]
studied the impact of noise and blur on different semantic segmentation methods.
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Liu et al. [38] combine a denoise network in classifier to improve classification’s
performance under noisy condition. Very recently, Mohamed and Gabriel [45] anal-
yse motion blur and propose several methods to improve detection performance
on motion blurry images.

However, most of these existing works assume the degradation parameters
such as the down-sampling ratio is known and fixed. Based on the degradation
equivariant representation, our framework is robust to various degradation in
real-world scenarios. Without an explicit restoration module or restoration step,
we directly perform the detection on low-dimension encoded features that saves
much computational burden.

3 Down-sampling Degradation Transformations

Fig. 3: An illustration of how our AERIS is implemented based on CenterNet [64].
Left is the original CenterNet while the right one is the architecture of AERIS.

In real scenarios, the image may be captured and processed in various ways.
To cover these generally unknown operations, it is necessary to select a practical
degradation model for the degradation transformation. This model would trans-
form the high resolution (HR) image x to the low resolution counterpart t(x)
with Eq. 1.

Early restoration methods assume a simple degradation model where LR is
directly down-sampled from the HR images without or with simple noise. Instead
of dealing with synthetic images, recent methods now focus on more realistic
degradation models. For example, [4] directly train the model on the LR and
HR images pair captured by the real camera system. USRNet [60] effectively
handled the degradation models with different parameters such as scale factors
by unfolding the model-based energy function. Here, we adopt the practical
degradation model [13,36,3,60,59] that accounts for diverse degradation in real
images.
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Convolution Operation: Gaussian blur kernel is the most common kernel
to blur the image [12,37,3]. Here, we choose two Gaussian degradation kernels k:
isotropic Gaussian kernels kiso and anisotropic Gaussian kernels kaniso [3,62,59].
We also consider none degradation kernel as knone. Following [59], the kernel
size is uniformly sampled from {7× 7, 9× 9, ..., 21× 21} and the kiso’s width is
uniformly chosen from (0.1, 2.4). For kaniso, the kernel angle is uniformly chosen
from (0, π) and the longer kernel width is uniformly chosen from (0.5, 6).

Noise: When dealing with the real-world scenarios, the Gaussian noise model
is usually adopted to simulate the noises from camera sensor noise [28], low-light
noise [56] to quantization noise [25] etc. Therefore, we adopt a zero-mean
additive white Gaussian noise (AWGN) model n ∼ N(0, σ) in Eq.1. The variance
σ is randomly chosen from a uniform distribution U(0, 25/255) (e.g. 13.2/255).

Down-sampling: For the down-sampling process, the sampling ratio s is
randomly chosen from uniform distribution U(1, 4) (e.g. 1.9) while the down-
sampling methods is randomly chosen from nearest method dsnearest, bilinear
method dsbilinear and bicubic method dsbicubic.

So the final down-sampling degradation transformation t would take from
random blur kernel k, noise level n and down-sampling ratio s in the total
distribution T , as t ∼ T (k, n, s).

4 Our Framework

Due to its concise structure, we mainly take one-stage object detector Cen-
terNet [64] to illustrate how to implement our AERIS. More object detectors’
implements and results please refer to supplementary. We think that our AERIS
framework is a generic framework that could also be implemented on other
popular object detectors [43,17] and various backbones [23,39,32,42].

4.1 CenterNet

CenterNet [64] is an efficient one-stage anchor-free object detector. We show
its vanilla structure of [64] in Fig.3 (a). Input image is fed to the backbone
(i.e. ResNet18 [21]) to extract /32 bottleneck feature, and then upsampled to
a /4 feature map by three ×2 deconvolution blocks. This /4 feature map is
passed to scaling blocks with three independent convolution blocks to generate
the final feature maps. Based on this feature map, there are prediction heads
conducting class-wise bbox center detection, bbox height and width regression,
offset regression respectively. For more details, please refer to [64].

The CenterNet could be decomposed into an encoder-decoder style structure.
Here, we denote the network backbone part (gray part in Fig.3.a) as encoder E.
The object detection decoder Do, comprised by three prediction heads (colored
in orange in Fig.3 (a)), decodes the object information.
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4.2 Architecture and Training Pipeline

Fig.3 (b) illustrates how to implement our AERIS based on CenterNet [64].
The detailed training procedure is given in Algo.1. When training AERIS, we
first apply the degradation transformation t ∼ T (k, n, s) convert x to a random
generated t(x), covering the degradation space of real scenarios. In each batch

B, the generated t(x) ∈ RB×3×H
s ×W

s should keep the same down-sampling rate
s ∼ (1, 4). Then the transformed degraded LR image t(x) are sent to the encoder

E to encode the degradation equivariant representation E(t(x)) ∈ RB×C× H
s∗d×

W
s∗d .

Here the encoder E refers to the backbone in detection network, and d is the
down-sample rate of backbone (i.e. 32 for ResNet [21]).

We then input degradation equivariant representation E(t(x)) into upscaling
blocks with three ×2 deconvolution blocks to generate the final feature map
for object detection decoder Do and arbitrary resolution restoration decoder
(ARRD) Dr. As illustrated by the red arrows in Fig.3, we introduce the skip
connection on /8 and /16 feature maps between the backbone encoder E and the
deconvolution blocks. Fusing features from different scales is a common process
in low-level vision tasks, and could enhance semantic information and contribute
to the subsequent Do and Dr.

We further regularise the representation encode E with our unique ARRD
Dr that implicitly estimate the self-supervised singal t to recover HR image x̂.
Since the downsampling rate s is not a fixed integral number in the training
stage, ARRD could deal with an arbitrary scale factor. ARRD Dr could force the
encoder E to not only capture the dynamics of how images change under different
transformations, but also extracts the complex patterns of visual structures. Since
ARRD Dr aims to recover the original resolution of clean image x from E(t(x))),
it could also support the object detection decoder Do with more detailed features.
Inspired by the learnable resizer model [50], we design this decoder with a residual
bilinear model shown in Fig. 3, which ends up with a ×4 pixel shuffle layer [47].
ARRD is a light weight structure that uses fewer parameters (0.06M) compared to
the backbone encoder (11.17M), upscaling blocks (3.61M) and detection decoder
Do (0.12M). The ARRD loss ld is defined as an L1 loss between output image x̂
and ground truth image x:

ld = |x̂− x|1 = |Dr(E(t(x)))− x|1. (2)

We adopt the three CenterNet prediction heads as the object detection decoder
Do to conduct detection on the final feature map generated by the upscaling
block.

As shown in Algo.1, we optimise the total loss ltotal including detection loss
lobj (i.e. classwise bbox center loss, bbox width and height loss, bbox offset loss
for CenterNet [64]), and data restoration loss ld:

ltotal = lobj + λ · ld, (3)

where λ is the non-negative parameters for loss balancing. Which we set to 0.4
in CenterNet experiments and 0.8 in DETR experiments, more ablation details
please refer to supplementary.
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Algorithm 1 AERIS Algorithm Pipeline

(1). Data Generation:

B: batch size, C: channel, H: image height, W: image width

inputs: HR image x = (B,C,H,W ), down-sample factor s ∼ (1.0, 4.0)
outputs: degraded LR image t(x) = (B,C, H

s ,
W
s )

for i in range(B): do
(1). Convolution with blur kernel k
(2). Down-sampling with rate s
(3). Add noise n

end for

(2). Training:
inputs: Degraded LR image t(x) = (B,C, H

s ,
W
s )

outputs: detection output, estimated SR image x̂
encoding:
t(x) E−−−−→E(t(x))
decoding:
data restoration decoding: x̂ = Dr(E(t(x))
detection decoding: detection results = Do(E(t(x))

4.3 Inference Procedure

The inference procedure only involves encoder E , upscaling block and object
detection decoder Do as illustrated in Fig.3. Specifically, the encoder E encodes
the input target image before Do performs the detection. Compared to explic-
itly pre-processing image for high-level tasks [9,46,19], our AERIS saves much
computational time as we avoid reconstructing HR details of data.

We could also reconstruct the HR image with our ARRD decoder Dr. Very
interestingly, our restored images x̂ are more machine vision oriented and exhibit
artifacts around the center of the object, as shown in Fig.4.

5 Experiments and Details

5.1 Datasets and Implementation Details

Dataset. We adopt two widely used object detection datasets MS COCO [35]
and KITTI [15] for detection robustness evaluation. MS COCO contains ∼118k
images with bounding box annotation in 80 categories. We use COCO train2017

set as train set and use COCO val2017 set as normal condition evaluation set.
Also COCO dataset differentiates the labels of different scale level’s objects, and
give them specific evaluation metrics (small: APs, middle: APm, large: APl),
which could show us different degradation conditions’ influence on different scale
objects, especially the down-sampling process s.

KITTI [15] is a popular small object detection dataset for autonomous driving.
For KITTI dataset, we evaluate car class, and use KITTI train set as train set
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Table 1: Comparison with SOTA restoration methods and different training
strategies onCOCO-d dataset. HereCenterNet withResNet-18 backbone and
Swin-T backbone were adopted. The inference images with higher resolution
are in blue background.

Test Set Pre-process Training Strategy
CenterNet (ResNet-18) CenterNet (Swin-T)

AP APs APm APl AP APs APm APl

COCO
-

Detection

30.1 10.6 33.2 47.2 36.9 17.9 41.8 52.9

COCO-d

14.5 1.2 10.4 38.6 19.9 2.7 16.9 46.2

bicubic (×2) 16.2 4.1 15.3 31.1 18.6 4.0 17.8 39.7

bicubic (×4) 8.0 4.6 10.5 10.1 10.6 5.7 12.8 16.7

SRGAN [31] (×2) 14.8 2.6 14.3 27.9 16.6 3.0 16.5 33.4

DBPN [20] (×2) 15.0 3.5 14.3 27.4 16.7 3.4 16.1 32.0

Real-SR [4] (×2) 14.2 2.6 12.4 29.5 17.3 3.6 17.0 34.1

BSRGAN [59] (×2) 16.8 4.2 15.8 36.9 20.2 4.8 18.1 40.5

BM3D 10.4 0.8 6.8 27.9 10.9 0.7 8.8 35.1

Restormer [58] 11.4 1.2 7.2 34.8 11.9 1.4 8.9 33.4

-

Deg t 17.6 2.3 15.4 41.9 20.9 3.1 20.3 47.6

Deg t + N 17.9 2.5 15.9 42.5 21.0 3.0 20.4 48.2

Dr + Detection 17.7 4.8 15.8 41.0 21.4 5.6 19.6 46.3

AERIS 18.4 2.7 16.4 42.5 21.6 3.2 20.4 49.0

and use KITTI val set as normal condition evaluation set, and show the AP
rate for comparison.

Impalement Details. We build our framework based on the open-source
object detection toolbox mmdetection [5]. Throughout the experiments, the
backbone ResNet-18 [21] and Swin-T [39] are initialed with ImageNet [21] pre-
train weights. We apply the data augmentation pipeline in mmdetection [5],
specifically we adopt random crop, random flip and multi-scale test.

During training stage, all the models are trained on 4 Tesla V100 GPUs. Same
as setting in [5], for AERIS-CenterNet training, the input image shape is resized
to 512×512. The model has been trained for 140 epochs with SGD optimizer.
Batch size is set to 16 per GPU. Momentum and weight decay are set to 0.9 and
1e-4. Initial learning rate is 0.01 and warms up at first 500 iterations and would
decays to one-tenth at 90 and 120 epoch.

Comparison Methods. To evaluate object detectors’ robustness under dif-
ferent conditions’ degradation, we separately set the multi-degradation evaluation
and single-degradation evaluation (see Sec. 5.2 and Sec. 5.3 for details). We
first compare our methods with SOTA image restoration methods: non-blind SR
methods [31,20,33], blind SR methods [4,59], denoise methods [61,33,58]. Also
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Table 2: Comparison with SOTA restoration methods and different training
strategies on KITTI-d dataset. Here CenterNet with ResNet-18 backbone is
adopted. We also show the inference speed (FPS) in the table.

Methods - bicubic (x2) bicubic (x4) SRGAN [31] (x2) DBPN [20] (x2) BSRGAN [59] (x2)

AP 42.2 50.6 36.5 54.3 55.6 70.8

FPS 87.4 50.0 16.2 51.1 50.6 51.4

Methods BM3D Restormer [58] Deg t Deg t + N Dr +Detection AERIS

AP 50.9 52.6 76.0 76.6 80.0 80.5

FPS 86.0 86.1 87.4 87.4 43.6 87.4

in Sec. 5.3, we separately using different type of restoration methods to handle
different type of degradation, for degradation specific comparison.

On the other hand, we also compare with other training strategies of the
network setting, to evaluate their robustness improvement on detection. As it
shown in Table 1 and Table 3. “Deg t” corresponds to train the detector with
the LR images t(x) random generated from HR images x, with the random
degradation transformations in Sec. 3. “Deg t + N” means to mix the training
data of HR image x and LR images t(x). “Dr + Detection” is the structure
like [19] which joint optimize a pre-process SR block and following object detector.

For fairness, all comparison methods adopt the same data augmentation
process and same training setting. In the testing stage, all the results are tested
on a single RTX 6000 GPU. We compare the speed by reporting the frames per
second (FPS) in the experiments, a simple illustration is shown in Table 2.

5.2 Multi-Degradation Evaluation

To evaluate object detectors’ robustness under diverse degradation of real-world
images. Different from previous works [22,27,38,45] that only consider single
degradation type at a time. Following the practical degradation model [13,36] in
Eq.1, we design the experiments on images with multiply degradation conditions
and down-scale ratios, to verify detection robustness in real-world diverse condi-
tion. We generate COCO-d dataset from original COCO val2017 dataset and
KITTI-d dataset from original KITTI val dataset. We give per-image a random
blur kernel (isotropic Gaussian kernel kiso, anisotropic Gaussian kernel kaniso)
and random noise level (AWGN noise with variance σ ∼ U(0, 25/255)). As for
the resolutions, we down-sample per image in COCO val2017 with a random
rate s ∼ U(1.0, 4.0).

The experimental results are shown in Table 1 and Table 2, we add the up-
scale ratio (×2, ×4) after name of SR methods. We first give the detection results
on original COCO val2017 and COCO-d dataset. The object detector is easily
affected and the performance suffers a large decrease on the multi-degradation
condition. Table 1 also verifies up-scale higher resolution (either by interpolate or
SR pre-process) improves the detection performance on small objects, but has a
negative impact on the middle and large objects. Restoration methods would also
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Table 3: Comparison with SOTA restoration methods and SSL methods on
COCO val2017 with noise, gaussian blur condition and low resolution
condition (down-sampling ratio: 2 and 4). Here CenterNet with ResNet-18
backbone was adopted. Higher resolution results are in blue background.

(a) Noise.

Method
σ
(5, 50) 15 25 50

- 22.8 26.8 23.8 15.4

IRCNN [61] 22.6 26.8 24.2 16.8
Swin-IR [33] 24.2 28.0 25.6 19.3

Restormer [58] 23.8 27.6 25.1 18.9

Deg t + N 24.3 27.6 25.0 18.3
Dr + Detection 24.8 28.5 25.5 19.4

AERIS 25.1 28.7 26.5 20.2

(b) Blur.

Method
k

Mix

- 26.7 25.8 23.9 23.1

EPLL [65] 27.8 26.8 25.4 25.2
IRCNN [61] 26.7 26.9 24.1 22.8

Deg t + N 28.8 27.5 27.6 27.8
Dr + Detection 28.5 27.7 27.5 27.3

AERIS 29.3 28.6 28.0 28.2

(c) Down-sampling (Ratio: 2).

Method
metric

AP APs APm APl

- 20.2 1.5 16.1 49.8

SRGAN [31] (×2) 24.0 6.2 25.4 39.8
DBPN [20] (×2) 25.1 7.3 27.1 41.9
Swin-IR [33] (×2) 25.4 7.6 27.0 42.4

Dr + Detection 26.0 8.4 26.2 46.5
AERIS 25.4 4.6 25.8 49.6

AERIS (×2) 26.8 8.6 28.8 45.2

(d) Down-sampling (Ratio: 4).

Method
metric

AP APs APm APl

- 8.2 0.0 3.2 33.1

DBPN [20] (×2) 14.8 1.0 9.9 39.7
DBPN [20] (×4) 12.2 1.7 11.7 23.4
Swin-IR [33] (×2) 15.2 1.1 10.1 39.9
Swin-IR [33] (×4) 12.8 1.8 12.2 23.4

Dr + Detection 15.1 1.8 12.7 40.1
AERIS 13.0 0.8 10.2 42.6

AERIS (×2) 15.8 2.0 13.2 40.9

invalid if degradation types and down-sampling scales are diverse, among several
restoration methods, real-world SR method BSRGAN [59] could get satisfactory
results. Our AERIS model could get best performance in most of metrics, even
with a lower input resolution, but the one limitation is that AERIS could not get
best performance on small object.

5.3 Degradation Specific Evaluation

To further understand the advantages of AERIS, we design the experiments
on single degradation conditions. We separately make experiments on noise,
gaussian blur and low-resolution conditions. For noise and blur condition, in
training stage of three SSL methods, we generate t(x) from x with noise n
(variance σ ∼ U(0, 50/255)) and blur kernel k (same as Sec. 3). As for low
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Table 4: Ablation results of CenterNet on COCO-d dataset.

CenterNet +Deg t
+feature
connect

+ARRD
loc 1

+ARRD
loc 2

+ARRD
loc 3

mAP
(COCO-d)√

14.5√ √
16.8 (+2.3)√ √ √
17.5 (+3.0)√ √ √
17.7 (+3.2)√ √ √ √
18.2 (+3.7)√ √ √ √
18.4 (+3.9)√ √ √ √
17.9 (+3.4)

resolution condition, we generate t(x) from x with down-sampling ratio s. Here
we discuss three conditions as follow:

Performance w.r.t Noise & Blur. For noise’s affect on object detection,
we process COCO val2017 with random Gaussian noise n ∼ N(0, σ), we first
random choose variance σ from uniform distribution U(5/255, 50/255) for mix
noise level evaluation. Then we take three different noise level: σ = 15, σ = 25
and σ = 50 for specific evaluation. We compare AERIS with SOTA denoise
methods IRCNN [61], Swin-IR [33] and Restormer [58] and also compare with
other training strategies. We report the average precision (AP) in Table 3a.

For blur’s affect on object detection, we first process COCO val2017 with
random isotropic Gaussian kernel kiso and anisotropic Gaussian kernel kaniso
(probability both 0.5) as Mix evaluation. Then we specifically choose three
degradation kernels for specific evaluation (see Table 3b). We compare with
Gaussian deblur methods EPLL [65] and IRCNN [61] and other two other
training strategies, then report AP value in Table 3b. Our AERIS gains best
performance under various noise and blur conditions, among image restoration
methods and other training strategies.

Performance w.r.t Low Resolution. To evaluate low resolution’s affect
on detection task, we down-scale original COCO val2017 with a fixed down-
sampling ratio s. Here we set the down-sampling ratio to 2 and 4, and then
compare with SOTA SISR methods SRGAN [31], DBPN [20], Swin-IR [33] and
pre-stage method “Dr + Detection”. We report the total AP and different level
objects’ detection performance (APs, APm, APl) in Table 3c and Table 3d. We
also make an additional experiments to up-scale input images with ratio 2 and
then send into AERIS model as AERIS (×2), for same resolution comparison
with SR methods and pre-upsampling method.

5.4 Ablation Study

To evaluate the location of ARRD on CenterNet [64], we separately make the
ablation study to evaluate each part’s effectiveness, as shown in Table 4, “+Deg
t” refers to adding the degradation transformation in Sec. 3. “+feature connect”
means the feature connection process in Fig. 3. “+ARRD” adds the decoder



14 F. Author et al.

Fig. 4: Exemplar detection results on MS COCO 2017 dataset [35]. (a)/(b) is
CenterNet trained on normal images and tested on normal/COCO-d dataset,
(c)/(d)/(e) is CenterNet tested on the degraded image restored by individual SR
algorithm SRGAN [31]/Real-SR [4]/BSRGan [59]. (f) is the detection result of
our AERIS and we use the output of ARRD Dr as background images.

Dr upon the network structure. We also evaluate adding ARRD on different
location of the up-sampling blocks, “loc 1” means the shallow up-samling layer,
“loc 2” means middle up-sampling layer and “loc 3” means the final up-sampling
layer (“loc 3” also connect with the detection decoder Do), as our finding, to
implement ARRD on the middle layer could get best result.

6 Conclusion

In this paper, we propose a novel self-supervised framework, AERIS, to handle
object detection for arbitary degraded low resolution images. To capture the
dynamics of feature representations under diverse resolution and degradation
conditions, we propose a degradation equivariant representation that is generic
and could be implemented on popular detection architectures. To further combine
the strength of the existing progress on super resolution (SR), we also introduce an
arbitrary-resolution restoration decoder that supervises the latent representation
to preserve the visual structure. The extensive experiments demonstrate that
our AERIS achieves SOTA results on two mainstream public datasets among
different degradation conditions (resolution, noise and blur).
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64. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. CoRR abs/1904.07850
(2019), http://arxiv.org/abs/1904.07850

65. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image
restoration. In: 2011 International Conference on Computer Vision. pp. 479–486
(2011). https://doi.org/10.1109/ICCV.2011.6126278

66. Zou, W.W.W., Yuen, P.C.: Very low resolution face recognition prob-
lem. IEEE Transactions on Image Processing 21(1), 327–340 (2012).
https://doi.org/10.1109/TIP.2011.2162423

http://arxiv.org/abs/1904.07850
https://doi.org/10.1109/ICCV.2011.6126278
https://doi.org/10.1109/TIP.2011.2162423

	Exploring Resolution and Degradation Clues as Self-supervised Signal for Low Quality Object Detection

