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Abstract. Graph-based approaches have been becoming increasingly
popular in road network extraction, in addition to segmentation-based
methods. Road networks are represented as graph structures, being able
to explicitly define the topology structures and avoid the ambiguity of
segmentation masks, such as between a real junction area and multiple
separate roads in different heights. In contrast to the bottom-up graph-
based approaches, which rely on orientation information, we propose a
novel top-down approach to generate road network graphs with a holistic
model, namely TD-Road. We decompose road extraction as two subtasks:
key point prediction and connectedness prediction. We directly apply
graph structures (i.e., locations of node and connections between them)
as training supervisions for neural networks and generate road graph
outputs in inference, instead of learning some intermediate properties
of a graph structure (e.g., orientations or distances for the next move).
Our network integrates a relation inference module with key point pre-
diction, to capture connections between neighboring points and outputs
the final road graphs with no post-processing steps required. Extensive
experiments are conducted on challenging datasets, including City-Scale
and SpaceNet to show the effectiveness and simplicity of our method,
that the proposed method achieves remarkable results compared with
previous state-of-the-art methods.

Keywords: Road Network Extraction; Relation Inference; End-to-end
Appoach; Remote Sensing

1 Introduction

Road network extraction from satellite imagery is a fundamental component
for automatically constructing rich and accurate maps, and enabling further
route planning and navigation applications. High quality maps require several
good properties, including road connectivity, precise localization on junctions
and multiple interactive roads, and large coverage of the physical world. To
resolve the above challenges, a large variety of methods have been proposed,
which are typically categorized into segmentation-based [28,2] and graph-based
methods [1,23,10]. While segmentation based methods are good at modeling
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Fig. 1. Supervision signals for various road extraction methods. Different from prior
work, we directly leverage graph structures to supervise the training of our network,
and then our network produces graphs in a straightforward manner during inference.

contextual dependencies, segmentation masks are vague in representing complex
structures [10] and require various post-processing heuristics to convert road
masks into road networks. In this work, we focus on the second category and
propose a novel top-down approach for road graph construction.

Previous graph-based methods make use of the orientation clue to construct
a road graph iteratively [1,23,3] or simultaneously [10]. In each location of a road,
they estimate the orientation to explore and move forward, and add the next
location to the graph, which are bottom-up approaches and gradually extend a
road graph. In the end, road graph extraction is completed when no orientation
can be found from all the locations of the current graph. Furthermore, a recent
work [10] improves the iterative graph construction scheme by encoding key point
locations and orientations to extend as the outputs of neural networks. Similar to
segmentation, it performs graph construction using a dense prediction network,
integrating more context dependencies and avoiding expensive iterative scanning
of satellite images. However, this method still relies on orientations to establish
edges for graph construction.

In spite of the success of previous methods in building road graphs, we ques-
tion if orientation-based methods are the best way to generate road graphs from
satellite images? This question is from the observation that orientation predic-
tion in these methods is quantized and can cause imperfection in geometries
and node localization in the resultant road graph. Besides, orientation is not
a direct matching, hence a post-processing is indispensable to convert the in-
termediate results into final graphs, which might introduce further errors and
cause mismatch between different locations. In this paper, we propose a simple
alternative approach to generate road graphs, where we aim to learn the con-
nectedness between different points and output graphs directly. The proposed
method of predicting the connectedness not only helps us to emit road graph
structures, but also allows our network to train using graph supervision (i.e.,
location of nodes and connected edges between them), which is completely dif-
ferent to other approaches, as shown in Fig. 1.

Relation reasoning has attracted much attention in learning the relation be-
tween multiple instances, achieving broad applications such as answering compli-
cated questions from images [19], learning non-maximum suppression in object
detection [12]. In our work, we introduce a relation reasoning module into road
network extraction, and apply it to learn the connectedness between two loca-
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tions from the key point prediction component of our network. Finally, the whole
network can produce a set of points on a road as well as their connections with
a holistic scheme.

This paper introduces a novel holistic graph construction method using neu-
ral networks. We highlight the key novelties of our work below:

– We propose a new road network extraction framework, TD-Road, which
regards road network extraction as key point prediction and connectedness
prediction subtasks. Our model learns to generate a road graph end-to-end
using graph supervision, as compared to intermediate information used to
generate graphs in previous graph-based methods. Our method is extremely
simple that it outputs a graph structure without any further post-processing.

– We introduce relation inference into road network extraction, which shows
appealing capability to model the relations between different locations of
a map. In our work, we leverage a relation reasoning module to learn the
connectedness between two points on a road. Further, we propose a neighbor-
guided relation reasoning module to boost our framework.

– Extensive experiments and comparisons show the effectiveness and advan-
tages of our new scheme for road extraction. We demonstrate that the pro-
posed method localizes crucial graph nodes precisely and performs better in
dealing with ambiguous regions.

2 Related Work

2.1 Road Network Extraction

Graph-based approaches As an early study of graph-based model, Road-
Tracer [1] formulates road network extraction as a graph growing procedure,
which starts from initial seeds and extracts roads iteratively by predicting the
orientations to extend the graph. Further, VecRoad [23] aims to overcome the
imprecise graph exploration with a fixed step size, and boost the iterative graph
construction by using a flexible step size and segmentation cues. Besides, These
graph-growing approaches also suffer from inefficiencies since they need to feed-
forward an image patch to CNN to obtain the orientations in each step. To
overcome the low-efficiency of single prediction, Sat2Graph [10] represents the
graph as tensor coding, which encodes the key points and orientations at the
same time with a dense prediction network, which directly produces the predic-
tion over a large area. Besides, Sat2Graph shows inspiring results in handling
ambiguous regions, such as multiple parallel roads and challenging highways with
bridge interactions at different layers. Further, graph convolution networks have
been exploited in similar tasks to learn the attribute for each road segments [13]
or locations [11].
Segmentation-based approaches In addition to graph-based methods, other
approaches consider the road extraction as a segmentation task to output road
masks. These methods can model global context, but find it hard to represent
complex structures well using a simple road mask. Many previous works focus
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on designing network architectures for road segmentation [24,6,20,16,9,28], which
can capture long and narrow shapes, as well as large variances of layout struc-
tures. In particular, DlinkNet [28] is a successful architecture designed for road
segmentation, which leverages skip connection over different stages and dilated
convolutions in the bottleneck. Deep layer aggregation has also been shown to
be an effective architecture for this task [10]. To improve connectivity, joint ori-
entation learning [2] has been combined with segmentation, and orientations are
demonstrated as a crucial clue for road segmentation.

Observing the prior work, orientation is important and exploited by most
methods, either graph-based or segmentation-based approaches. However, very
few works directly models the connections between adjacent locations. Besides,
graph-based methods still require a post-processing step to convert the outputs
of networks into graphs, based on the orientations or moves for the next points.
Different from others [1,23,10], our network can output a graph structure in
a holistic way and allows optimization using graph structures (i.e., nodes and
edges) directly.

2.2 Relation Network

Relation network is a neural network component, aiming to infer the relationship
among multiple instances, which could be objects [19], images [7,21] etc. For
example, it is proposed to answer complex questions regarding multiple objects
in visual question answering [19]. By incorporating a relation reasoning module,
it is able to answer more complicated questions, for example “What is the color
of the object behind the blue cube?”. Relation network is also utilized to learn
the similarity scores between images for few-shot learning [22], which shows
strong capability to learn complex manifolds. Besides, relation inference has
been employed in object detection for learning non-maximum suppression [12],
which picks the best bounding box from all the region proposals and allows for
training end-to-end, integrated with other components of object detection.

Inspired by relation reasoning in prior work, we design a new model for
road network extraction by representing roads as graphs. Differently, we learn
pixelwise and pairwise relations from a dense feature map, for constructing graph
structures from image inputs. As far as we know, there is no previous work on
road network extraction modeling the relation between different locations of a
map and output a road network graph directly from a network.

3 A Holistic Model for Direct Graph Construction

3.1 Overview

We depict our model for holistic road graph construction from satellite images.
Our approach leverages graphs to supervise the training of our network. We de-
compose the graph construction into two sub-tasks: key point prediction and
connectedness prediction between key points. Fig. 2 draws the overview of
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Fig. 2. Overview of TD-Road model. The model outputs a set of key points as well as
their connections as the extracted road graph. Our network has two branches, consisting
of key point prediction and relation reasoning over key points. For each key point, the
relation reasoning module computes the probabilities between each key point and its
neighboring pairs, which takes a dense feature map and neighbor information of key
points as inputs. In training, the ground truth graph provides the pairs regarding the
connectedness between key points. In inference, our network uses the predicted key
points and corresponding generated neighbors to perform relation reasoning, and then
at the end outputs a road graph.

our model, and we discuss the details of the two components as follows. Partic-
ularly, we highlight that our graph generation is trained end-to-end from input
satellite imagery to generated graphs. To build our model, ResNet is applied as
our backbone to extract dense features and different heads for individual sub-
tasks are designed. First, the key point prediction head outputs a 2-d heatmap
indicating the location of key points of roads, which can be trained using a
segmentation-like loss and will be discussed with more details in Sec 3.3. Sec-
ond, we generate key point pairs if two points are close enough, and classify each
pair as connected or not based on our relation reasoning module, as followed
in Sec 3.2. In model training, we create positive/negative pairs using the key
point locations as well as their connectedness from ground truth graphs. In in-
ference, we first run the key point branch and apply the outputs from key point
prediction as the inputs of relation branch to predict the connectedness between
predicted key points.

3.2 Relation Reasoning for Graph Edges

As the main contribution of this work, we first introduce our relation reasoning
module for connecting key points and constructing a graph. To build a relation
reasoning module for establishing edges between graph nodes, we create a sep-
arate decoder with a shared encoder to key point prediction, as illustrated in
Fig. 2. The decoder first outputs a dense feature, and feature extraction of key
points over the dense features is processed for classifying the key point pair. Let
FR ∈ RC×H0×W0 = Θ(E(I)) be the output of a decoder Θ followed with a fea-
ture extractor E performed on the input image I. {(xi, yi)}Ki=1 are the predicted
key points, and then our goal is to know if there is an edge between points (xi, yi)
and (xj , yj).
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Fig. 3. Training examples for relation reasoning module. We perform binary classifi-
cation for each pair between a candidate (blue) and its neighbors (orange). Positive
pairs are regarded as the key point pairs, which are connected through a straight line.
Otherwise, it will be regarded as negative pairs.

Naive relation reasoning: To reach the above goal, we check the edges between
a candidate point and all of its neighbors, relying on a distance threshold, as
shown in Fig. 3. During training, graph annotation provides us the correct edges,
therefore, we know the connectedness of each key point pair. And thus we can
easily build a binary classifier to predict the connectedness between two key
points. Specifically, we consider all the neighbors of a candidate point as potential
connections, and assign labels to them. Clearly, a direct edge between two points
is a valid positive example, as shown in the second plot of Fig. 3. Further, even
two points are not directly connected, but they are routable in the same direction
through the intermediate connecting point, we also consider this is a positive
pair, as shown in the third plot of Fig. 3. Last, the negative pairs are the points
not traversed, or not in a same direction, as shown in the last plot of Fig. 3.
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Fig. 4. Illustration of the naive relation
reasoning module (left) and the neighbor-
enhanced relation module (right).

To learn the relation between two
points, we extract pixelwise features
from FR at the locations (xi, yi)
and (xj , yj). Since the feature map
might be in a low resolution for-
mat, we apply bilinear interpola-
tion operations to extract features,
where the operations are differen-
tiable, resulting in features F ∗

i =
Interpolation(FR, xi, yi) and F ∗

j =
Interpolation(FR, xj , yj). And then,
we apply a linear projection on the
concatenation of F ∗

i and F ∗
j (i.e.,

Cat(F ∗
i , F ∗

j ))to produce the connect-
edness score. To augment the training
and boost the inference, we predict
the probability by switching the order of two points. Finally, the probability
to establish the edge can be calculated as

P = (Linear(2C, 1)(Cat(F ∗
i , F

∗
j )) + Linear(2C, 1)(Cat(F ∗

j , F
∗
i )))/2, (1)
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and the model parameters Θ, E and the above linear classifier can be learned by
using binary cross entropy loss, which is denoted as LR for the relation module.
Neighbor-enhanced relation reasoning:Observing the relation module men-
tioned above, we realize that feature extractions for the key points are separately
accomplished. Hence, it fails to model context information in relation reasoning.
Accordingly, it is interesting to know if contexts, in particular other key points,
help relation reasoning and determining connectedness. To aggregate the con-
text information over key points, we learn additional projection Ω and weighting
function W, outputting features of C and 1 channels, respectively. Therefore,
we project the feature map from the encoder and obtain FN = Ω(E(I)) and
W = W(E(I)), where FN ∈ RC×H0×W0 and W ∈ RH0×W0 . The context of
neighbors for a key point at (xi, yi) can be weighted by FN and W , which is
formulated as

F̂i =

∑
(xj ,yj)∈Sxi,yi

FN (:, xj , yj) ∗W (xj , yj)∑
(xj ,yj)∈Sxi,yi

W (xj , yj)
, (2)

where Sxi,yi are the locations which are the neighbors of the point at (xi, yi).
Similar to Eq.(1), the final prediction can be computed by concatenating them:
P = (Linear(4C, 1)(Cat(F ∗

i , F
∗
j , F̂i, F̂j))+Linear(4C, 1)(Cat(F ∗

j , F
∗
i , F̂j , F̂i)))/2.

3.3 Key Point Prediction for Graph Nodes

To predict the locations of key points, we create a dense prediction model based
on an encoder-decoder architecture and carefully design a suitable loss based on
road mask and key points. In the following, we present our decoder used in this
work, which is inspired by deep layer aggregation architectures [27] and All-MLP
decoder [26].

DLA-MLP decoder as task heads: Key point prediction is a task focusing
on local information and semantics. Key points usually appear in the junction
areas or abrupt blending locations and interpolated locations between others.
Therefore, propagating very wide context is likely unreasonable for this task,
therefore, we present a simple decoder based on Multi-Layer Perceptron (MLP)
which performs prediction over individual pixels. Since the encoder already com-
presses long range context information into feature maps, we do not aggregate
further contextual semantics in the decoder. Further, recent state-of-the-art seg-
mentation model [26] shows that competitive results with MLP decoder can be
achieved when encoder is able to capture representative features, which further
motivates us to design our decoder with MLP to infer individual road key points.

Deep layer aggregation (DLA) [27] is a network scheme, which summarizes
CNN features across layers and augments a base model to model what and
where better. With fewer parameters, it shows better accuracy with iterative and
hierarchical feature fusion, compared to skip connections with concatenation. In
this work, we present our MLP-based decoder with DLA to effectively aggregate
low-level localizable features as well as high-level contextual semantics.
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By combining MLP decoder [26] and DLA architectures [27], our DLA-MLP
decoder fuses the hierarchical features gradually with MLP components. Let
{Fi,0}Ni=1 be the multiscale hierarchical features from the encoder, where we
have N stages in total. For each feature map Fi,0, it has a size of Ci ×Hi ×Wi.
Formally, we formulate the steps of our DLA-MLP decoder with C embedding
dimensions, and the decoder outputs a feature map with size of C ×H0 ×W0 as
follows.

F
′

i,j = Linear(Ci,j , C)(Fi,j), (3)

F
′

i,j = Upsampling(Hi−1,Wi−1)(F
′

i,j), (4)

Fi,j+1 = Linear(Ci−1,j + C,C)(Cat(Fi−1,j , F
′

i,j)), (5)

where j = [0, ..., N−2], i = [N−j−1, ..., N ], and finally a feature map FN,N−1 ∈
RC×H0×W0 is obtained as the fused representation. And then we apply a 1× 1
convolution to project the representations to a heatmap of one channel for key
point prediction. Furthermore, we apply our DLA-MLP decoder as a component
(Ω in Sec 3.2) of our relation head to aggregate features similarly, in addition
to key point prediction. In this work, we apply the same embedding dimension
for key point prediction and relation reasoning module with C = 128.

3.4 Loss Function

As a binary classification problem, key point prediction can be also trained
using binary cross entropy (BCE) loss. However, it needs to address the extreme
imbalanced training example for key points. When vanilla BCE loss is applied, we
observe poor results in that very few key points are detected and the performance
of our overall model is restricted.

Image Key points Road masks

Fig. 5. Ground truth examples in comput-
ing loss function. We leverage road mask to
help more effective key point prediction.

The reasons are two aspects. First,
the background non-road pixels are
a lot, therefore, the training is likely
dominated by the negative pixels. Sec-
ond, the key point ground truths are
conceptually contradictory, in that
many road pixels are labeled nega-
tive, even though they share similar
visual patterns with the positively la-
beled pixels, such as colors, shapes,
contexts, etc.

Since our approach relies on the
key points to construct a graph, we
need to deal with the challenges men-
tioned above. In this work, we weight the different pixels for key point predic-
tions, based on BCE loss. We consider there are three types of pixels: key point
pixels; road pixels but not key points; background pixels. Specifically, we set



TD-Road: Top-Down Road Network Extraction 9

different loss weights for those pixels. Formally, given the ground truth label yt
for key points and prediction pt over location t, our road mask driven BCE loss
for key point prediction can be computed by

LKP = −
∑
t

wt · (yt · log(pt) + (1− yt) · log(1− pt)), (6)

where wt ∈ {wkp, wr, wb} are the loss weights for individual pixels depending on
their types, where Fig. 5 shows an example of ground truth used for loss function
computation.

Regularization: To further exploit the road information, we learn an additional
decoder to predict binary road masks and orientations of neighboring key points,
which are widely adopted in prior work for road extraction. In our work, we
highlight that our approach does not reply to segmentation masks or orientations
to construct our road graph, but we still observe this information is useful and
compatible with our framework. Therefore, we regard this additional task as a
regularization term Lreg to train our full model.

Finally, the loss for overall system is in a combination between key point,
relation and regularization heads:

L = LKP + LR + Lreg. (7)

Our method is embarrassingly simple in generating road graphs from satellite
images using neural networks, that we only need two hyperparameters to filter
incorrect key points and connections out. It is allowed to tune the thresholds to
achieve higher precision or recall.

4 Experiments and Results

4.1 Datasets & Evaluation Settings

City-Scale: This dataset [10] provides satellite imagery focusing on 20 US cities.
The dataset covers downtown areas with complex structures such as the overlaid
highways and bridges. Each image has a resolution of 2048×2048, and every pixel
corresponds to 1 meter in the real world. Therefore, this is a challenging scenario,
where multiple parallel roads or complicated structures appear in the images. In
addition, the dataset also provides the key points used to train a graph-based
model. We follow previous work [10] to use the same key points and connections
to learn our model. Finally, we use 144 images to train our model, and evaluate
different approaches on 27 examples.

SpaceNet : This dataset [25] contains 2780 satellite images. We follow the data
split of [10] and experimental setup to resize the images to 1 meter per pixel.
This split contains 2040, 358, 382 examples for training, validation and testing.
The dataset provides the ground truths in the format of line strings, indicating
the center of roads. To train our method, we first convert the line strings into the
graph format with key points (nodes) and connections (edges). In particular, we
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linearly interpolate the key points with 20 pixels in case the original connecting
key points in the dataset are very far from each other.

Evaluation metrics: First, we adopt the widely used APLS (i.e., average path
length similarity), introduced by [25], to evaluate the performance of each model.
The APLS metric computes the shortest path length between road network pairs,
which captures the overall performance of extracted roads. Second, we report the
TOPO scores [4] of precision (P), recall (R) and F1-score of extracted roads in
topology. We utilize the implmentation of TOPO scores from [10] to compare
our approach with others, which is very strict to penalize the details of extracted
roads.

Comparison methods:We compare our approach with previous popular meth-
ods and recent state-of-the-art models including graph-based model RoadTracer [1],
Sat2Graph [10] as well as segmentation-based model UNet [18], DlinkNet [28],
DeepRoadTracer [17] and orientation-learning based method [2].

4.2 Implementation Details

In this work, all the models are trained with 1024×1024 cropped image patches
for both datasets, and we use whole images to infer road networks. During
training, we crop image patches at random locations and then apply flipping
operations vertically and horizontally at 50% probability. Further, we rotate im-
age/graph pairs in the range of (−15

◦
, 15

◦
) and a photometric distortion [5] is

leveraged including brightness, contrast, saturation changes of an image. Specif-
ically, we implement our models using PyTorch and mmseg package [8], and
train the model with 8 Tesla V100 GPUs. AdamW [15] is applied to optimize
the training, where initial learning rate is 1×10−3, and betas is (0.9, 0.999), and
weight decay is 0.01. Further, we set the learning rate of key point prediction
and relation inference heads as 10× of the backbone. We use 1× 10−6 to warm
up the training with 200 iterations. Following many previous work [1,28,2], all
of our models are implemented with ResNet-34 as the backbone, and the model
weights are initialized using the ImageNet-1k pretrained representation. 30k and
150k training iterations are applied for City-Scale and SpaceNet datasets, and
learning rates are adjusted using cosine-based schedulers. We set {wkp, wr, wb}
as {200, 20, 1} for key point prediction loss in both datasets.

4.3 Comparison Results

In Table 1 and Table 2, comparison results with other state-of-the-art meth-
ods are listed. From the tables, we observe the proposed graph-based road ex-
traction method performs comparable with previous state-of-the-art method,
Sat2Graph [10], whereas Sat2Graph adopt a stronger backbone DLA [27]. In Ta-
ble 1, our best model obtains 65.74 APLS, which outperforms all the other meth-
ods. Further, our best model also obtains higher precision than other methods,
which indicates the effectiveness of relation reasoning which builds connections
properly. Regarding recall, the proposed model is slightly worse than DLA [27]
and Sat2Graph [10], but clearly better than all the other segmentation-based
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Table 1. Comparison results on City-Scale dataset.

Method Backbone Type
Topo

APLS
P R F-1

UNet [18] CNN

Seg.

78.00 57.44 66.16 57.29
DeepRoadMapper [17] ResNet-50 75.34 65.99 70.36 52.50
Orientation [2] ResNet-34 75.83 68.90 72.20 55.34
DLinkNet [28] ResNet-34 78.63 48.07 57.42 54.08
DLA [27,10] DLA 75.59 72.26 73.89 57.22

RoadTracer [1] CNN

Graph

78.00 57.44 66.16 57.29
Sat2Graph [10] DLA 80.70 72.28 76.26 63.14

Ours (Naive)
ResNet-34

77.82 68.44 72.83 62.17
Ours (Neighbors) 81.94 71.63 76.43 65.74

methods and graph-growing-based method RoadTracer [1]. In particular, we no-
tice that the segmentation-based method using DLA already provides 73.89 re-
call, which indicates the capability of DLA to detect more roads than ResNet-34
or similar architectures. Similar to City-Scale, we achieve more favorable results
in SpaceNet when the same backbone is applied compared with other methods.
We also highlight that our full model achieves competing results with previous
state-of-the-art model Sat2Graph [10] with a DLA backbone.

Further, we also compare our models using different relation reasoning mod-
ules with other approaches. By using naive relation reasoning mentioned in
Sec 3.2, our method already outperforms other segmentation-based methods in
APLS and recall of TOPO evaluation. Obviously, we can see the effectiveness of
incorporating neighbor information into each key points, that all the evaluation
metrics are consistently improved by using neighbors-based relation reasoning
in both datasets.

In addition to quantitative comparison, we also visualize the extracted roads
from different approaches in Fig. 6. For the graph-based methods, we first convert
the results of graph formats into binary road masks. From this plot, we would
like to highlight several points. First, we clearly observe the advantages of our
method over DLinkNet, which suffers from the connectivity issues in some areas
with rich vegetation or low-contrast appearances, as shown in the 1−st, 2−nd,
5−th, 6−th rows of the plot. Second, comparing our method with Sat2Graph,
we can see our method handles junctions better, because our method directly
considers two key points are supposed to connect or not. However, Sat2Graph
relies on the orientations between different key points, which are not accurate.
And the heuristic post-processing might also introduce errors. In contrast, we
link different key points by learning a binary classifier, which is a straightforward
solution. Besides, our neighbors-based relation reasoning module can help to
aggregate useful context information in constructing graph edges, and achieves
more precise results than our naive reasoning.
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Table 2. Comparison results on SpaceNet dataset.

Method Backbone Type
Topo

APLS
P R F-1

UNet [18] CNN

Seg.

68.96 66.32 67.61 53.77
DeepRoadMapper [17] ResNet-50 82.79 72.56 77.34 62.26
Orientation [2] ResNet-34 81.56 71.38 76.13 58.82
DLinkNet [28] ResNet-34 88.42 60.06 68.80 56.93
DLA [27,10] DLA 78.99 69.80 74.11 56.36

RoadTracer [1] CNN

Graph

78.61 62.45 69.60 56.03
Sat2Graph [10] DLA 85.93 76.55 80.97 64.43

Ours (Naive)
ResNet-34

82.45 73.54 77.74 60.91
Ours (Neighbors) 84.81 77.80 81.15 65.15

Table 3. Comparison results on City-Scale dataset in association with different loss
functions for key point prediction.

Loss
Topo

APLS
P R F-1

BCE 75.71 68.81 71.89 60.32
Focal [14] 80.82 62.16 69.79 47.95
Ours 77.82 68.44 72.54 62.17

4.4 Ablation Studies and Analysis

How important is the loss function for key point prediction? Key point
prediction plays an important role, which provides inputs to the relation reason
module. Hence, we show the results of using different loss function for key point
prediction. To avoid the negative impact of imbalanced pixels, focal loss [14] is
another option. Therefore, we compare our road mask weighting strategy with
standard BCE loss and focal loss. For BCE loss, we set loss weight for positive
and negative examples are 100 and 2. For focal loss, we set the loss weights as
100 and 5, we set γ in focal loss as 1. In Table 3, we list the comparison results
on City-Scale dataset, which is trained using naive relation module. From this
table, it is apparent that mask-driven loss is beneficial to reach higher perfor-
mance, owing to the more accurate key point localization. Even though focal
loss is widely used in handling imbalanced data distribution, we cannot observe
a successful application in our case. We can see focal loss achieves 80.82 preci-
sion, but performs not so well in road coverages and capturing road structures,
that recall and APLS are significantly worse than other losses.

Further, we show an example of predicted key points from standard BCE loss
and our version in Fig. 7. From this figure, we can see standard BCE and our
version capture similar structures of roads, and both loss functions help isolate
key points successfully, which are not very close to other points. However, our
version can distinguish the key points better when many of them fall into a small
region. as highlighted by the red bounding box in Fig. 7.
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Image GT [28] [10] Naive Ours

Fig. 6. Qualitative results on the extracted roads in City-Scale dataset. We com-
pare our models with naive and neighbors-based relation reasoning modules with
DLinkNet [28] and Sat2Graph [10].

(a) (b) (c) (d) (e)

Fig. 7. Example of key point prediction using different losses. (a) Image. (b) Mask for
the loss. (c) Key point GT. (d) Prediction w/o mask-based loss. (e) Prediction with
our mask-driven loss.

Is the model sensitive to the thresholds for determining graph nodes
and edges? We perform road extraction by using different thresholds for key
point prediction and connectedness prediction, varying from 0.3 to 0.5 with step
0.1. Fig. 8 shows the results by fixing each threshold and changing another. From
this figure, we can see the model is less sensitive to the connectedness prediction.
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Fig. 8. Results of applying different thresholds on City-
Scale.

Fig. 9. Scatter plot
of learned weights in
neighbors-based relation
reasoning module.

In other words, it gives us similar predictions once a relation reasoning module
is learned. In contrast, the key point prediction is crucial in providing an initial
point set for the relation module, and drastically affects the performance, which
sheds the light for future directions, that we need to improve the key point
prediction with a stronger encoder and specific decoder for key points.

What does the neighbors-based relation learn? In our neighbor-enhanced
relation reasoning module, we learn to weight individual key points. To under-
stand the learned relation, we show the statistics about the key points on City-
Scale. In Fig. 9, the x-axis shows the number of connections for key points. For
example, a point with 4 connections is a junction and the one with 2 connections
is a common key point. From this plot, we can see the weights for 4 connections
are larger than others, therefore, the information from junctions could be propa-
gated to other locations and affect the relation reasoning more than other points.
In contrast, the naive relation reasoning cannot leverage junction information to
determine connectedness, and obtain less accurate results.

5 Conclusions
In this paper, we present TD-Road, a simple-yet-novel graph-based method for
road network extraction. Different from most previous work, we directly learn
and emit graph structures with neural networks, instead of producing inter-
mediate representations such as orientations, next moves, etc. Our method is
extremely simple, in that we regard the graph generation as key point predic-
tion and connectedness learning problems. By integrating a pixel-level relation
module into a dense prediction network, our approach is able to produce graph
structures in a holistic way. We also present an effective relation reasoning mod-
ule with neighbors for each detected key point, and the overall model achieves
more favorable results than other methods using the same network backbone.
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