Densely Constrained Depth Estimator for Monocular 3D Object Detection Supplementary Material

Yingyan Li^{1,2,4,5}, Yuntao Chen, Jiawei He^{1,2,4}, and Zhaoxiang Zhang^{1,2,3,4,5}

 ¹ Institute of Automation, Chinese Academy of Sciences (CASIA)
² University of Chinese Academy of Sciences (UCAS)
³ Centre for Artificial Intelligence and Robotics, HKISLCAS
⁴ National Laboratory of Pattern Recognition (NLPR)
⁵ School of Future Technology, UCAS
{liyingyan2021,hejiawei2019,zhaoxiang.zhang}@ia.ac.cn, chenyuntao08@gmail.com

1 WOD detailed results

We also provide the detailed results on WOD [4] as Table 1 and Table 2 show.

Difficulty	Method	3D mAP				3D mAPH			
		Overall	0-30m	30-50m	$50-\infty$	Overall	0-30m	30-50m	$50\text{m-}\infty$
	M3D-RPN [‡] [1]	0.35	1.12	0.18	0.02	0.34	1.10	0.18	0.02
LEVEL_1	PatchNet [†] [2]	0.39	1.67	0.13	0.03	0.37	1.63	0.12	0.03
@IoU 0.7	PCT [5]	0.89	3.18	0.27	0.07	0.88	3.15	0.27	0.07
	CaDDN [3]	5.03	14.54	1.47	0.10	4.99	14.43	1.45	0.10
	MonoFlex [*] [6]	11.70	30.64	5.29	1.05	11.64	30.48	5.27	1.04
	DCD(Ours)	12.57	32.47	5.94	1.24	12.50	32.30	5.91	1.23
	M3D-RPN [‡] [1]	0.33	1.12	0.18	0.02	0.33	1.10	0.17	0.02
LEVEL_2	PatchNet [†] [2]	0.38	1.67	0.13	0.03	0.36	1.63	0.11	0.03
@IoU 0.7	PCT [5]	0.66	3.18	0.27	0.07	0.66	3.15	0.26	0.07
	CaDDN [3]	4.49	14.50	1.42	0.09	4.45	14.38	1.41	0.09
	MonoFlex [*] [6]	10.96	30.54	5.14	0.91	10.90	30.37	5.11	0.91
	DCD(Ours)	11.78	32.30	5.76	1.08	11.72	32.19	5.73	1.08

Table 1. The IoU@0.7 result on WOD [4] val set. *Italics*: These methods utilize the whole *train* set, while the others uses 1/3 amount of images in *train* set. ‡: M3D-RPN is re-implemented by [3]. †: PatchNet is re-implemented by [5]. *: MonoFlex is our baseline and re-implemented ourselves.

2 Keypoints visualization

Fig. 1 visualizes the 63 semantic keypoints.

Difficulty	Method	3D mAP				3D mAPH			
		Overall	0-30m	30-50m	$50\text{-}\infty$	Overall	0-30m	30-50m	$50 \mathrm{m}$ - ∞
	M3D-RPN [‡] [1]	3.79	11.14	2.16	0.26	3.63	10.70	2.09	0.21
$LEVEL_1$	PatchNet [†] [2]	2.92	10.03	1.09	0.23	2.74	9.75	0.96	0.18
@IoU~0.5	PCT[5]	4.20	14.70	1.78	0.39	4.15	14.54	1.75	0.39
	CaDDN [3]	17.54	45.00	9.24	0.64	17.31	44.46	9.11	0.62
	$MonoFlex^{*}$ [6]	32.26	61.13	25.85	9.03	32.06	60.75	25.71	8.95
	DCD(Ours)	33.44	62.70	26.35	10.16	33.24	62.35	26.21	10.09
	M3D-RPN [‡] [1]	3.61	11.12	2.12	0.24	3.46	10.67	2.04	0.20
$LEVEL_2$	PatchNet [†] [2]	2.42	10.01	1.07	0.22	2.28	9.73	0.94	0.16
@IoU~0.5	PCT[5]	4.03	14.67	1.74	0.36	3.99	14.51	1.71	0.35
	CaDDN [3]	16.51	44.87	8.99	0.58	16.28	44.33	8.86	0.55
	$MonoFlex^{*}$ [6]	30.31	60.91	25.11	7.92	30.12	60.54	24.97	7.85
	DCD(Ours)	31.43	62.48	25.60	8.92	31.25	62.13	25.46	8.86

Table 2. The IoU@0.5 result on WOD[4] val set. Italics: These methods utilize the whole train set, while the others uses 1/3 amount of images in train set. \ddagger : M3D-RPN is re-implemented by [3]. \ddagger : PatchNet is re-implemented by [5]. *: MonoFlex is our baseline and re-implemented ourselves.

Fig. 1. This figure shows the three views of 63 semantic keypoints of the car.

References

- Brazil, G., Liu, X.: M3d-rpn: Monocular 3d region proposal network for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 9287–9296 (2019) 1, 2
- Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking pseudo-lidar representation. In: European Conference on Computer Vision. pp. 311–327. Springer (2020) 1, 2
- Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution network for monocular 3d object detection. arXiv preprint arXiv:2103.01100 (2021) 1, 2
- 4. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J., Chen, Z., Anguelov, D.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020) 1, 2
- Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M., Xue, X.: Progressive coordinate transforms for monocular 3d object detection. Advances in Neural Information Processing Systems 34 (2021) 1, 2
- Zhang, Y., Lu, J., Zhou, J.: Objects are different: Flexible monocular 3d object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. pp. 3289–3298. Computer Vision Foundation / IEEE (2021) 1, 2