
Robust Object Detection With Inaccurate
Bounding Boxes

Chengxin Liu1, Kewei Wang1, Hao Lu1, Zhiguo Cao1⋆, and Ziming Zhang2

1 School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, China

2 Worcester Polytechnic Institute, USA
{cx liu,zgcao}@hust.edu.cn

Abstract. Learning accurate object detectors often requires large-scale
training data with precise object bounding boxes. However, labeling such
data is expensive and time-consuming. As the crowd-sourcing labeling
process and the ambiguities of the objects may raise noisy bounding
box annotations, the object detectors will suffer from the degenerated
training data. In this work, we aim to address the challenge of learn-
ing robust object detectors with inaccurate bounding boxes. Inspired by
the fact that localization precision suffers significantly from inaccurate
bounding boxes while classification accuracy is less affected, we propose
leveraging classification as a guidance signal for refining localization re-
sults. Specifically, by treating an object as a bag of instances, we intro-
duce an Object-Aware Multiple Instance Learning approach (OA-MIL),
featured with object-aware instance selection and object-aware instance
extension. The former aims to select accurate instances for training, in-
stead of directly using inaccurate box annotations. The latter focuses on
generating high-quality instances for selection. Extensive experiments on
synthetic noisy datasets (i.e., noisy PASCAL VOC and MS-COCO) and
a real noisy wheat head dataset demonstrate the effectiveness of our
OA-MIL. Code is available at https://github.com/cxliu0/OA-MIL.

Keywords: Object Detection, Inaccurate Bounding Boxes, Noisy La-
bels, Multiple Instance Learning

1 Introduction

Despite remarkable progress has been witnessed in the field of object detection
in recent years, the success of modern object detectors largely relies on large-
scale datasets like ImageNet [10] and MS-COCO [28]. However, acquiring precise
annotations is no easy task in professional and natural contexts. In practical ap-
plications with professional backgrounds (e.g., agricultural crop observation and
medical image processing), domain knowledge is often required to annotate ob-
jects. This situation leads to a dilemma, i.e., practitioners without computer
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Fig. 1: Illustration of standard Faster-
RCNN [34], FasterRCNN with regression
uncertainty [20], and our OA-MIL Faster-
RCNN on the ECCV wheat head detection
challenge dataset. Given inaccurately anno-
tated objects, we aim to learn a robust object
detector by treating each object as a bag
of instances. The inaccurate ground-truth
boxes are in red and the predictions are in
green.
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Fig. 2: Classification accuracy
and localization precision of
FasterRCNN on the simulated
“noisy” PASCAL VOC 2007
dataset [14], where box an-
notations are randomly per-
turbed. With the box noise
level increases, i.e., ground-
truth box becomes more and
more inaccurate, localization
precision drops significantly
while the classification still
maintains high accuracy.

vision background are not sure how to annotate high-quality boxes, while anno-
tators without domain knowledge can also be difficult to annotate accurate ob-
ject boxes. For example, recent wheat head detection challenge1 that was hosted
at the European Conference on Computer Vision (ECCV) workshop 2020 has
shown that precise object bounding boxes are not easy to obtain, because in
some domains the definition of the object is significantly different from generic
objects in COCO, thus brings annotation ambiguities (Fig. 1). In these cases,
there will be a demand calling for algorithms dealing with noisy bounding boxes.
On the other hand, annotating a large amount of common objects in the natural
context is expensive and time-consuming. To reduce the annotation cost [47],
dataset producers may rely on social media platforms or crowd-sourcing plat-
forms. Nevertheless, the above strategies would lead to low-quality annotations.
Recent work [47] argues that the object detectors will suffer from the degener-
ated data. In addition, even large-scale datasets (e.g., MS-COCO) are dedicated
annotated, box ambiguities [20] still exist. Therefore, tackling noisy bounding
boxes is a practical and meaningful task.

Recently, learning object detectors with noisy data have gained a surge of
interest, several approaches [1,5,25,47] have made attempted to tackle noisy an-
notations. These approaches often assume that the noise occurs both on category
labels and bounding box annotations, and devise a disentangled architecture to

1 https://www.kaggle.com/c/global-wheat-detection
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learn object detectors. Different from previous work, we focus on object detec-
tion with noisy bounding box annotations. The reasons are two-fold: i) due to
the ambiguities of the objects [20] and the crowd-sourcing labeling process, box
noise commonly exists in the real world; ii) object detection datasets [23] often
involve object class verification, thus we consider noisy category labels are less
severe than inaccurate bounding boxes.

Motivated by the observation that localization precision suffers significantly
from inaccurate bounding boxes while classification accuracy is less affected
(Fig. 2), we propose leveraging classification as a guidance signal for localization.
Specifically, we present an Object-Aware Multiple Instance Learning approach
by treating each object as a bag of instances, where the concept of the object bag
is illustrated in Fig. 1. The idea is to select accurate instances from the object
bags for training, instead of using inaccurate box annotations. Our approach
is featured with object-aware instance selection and object-aware instance ex-
tension. The former is designed to select accurate instances and the latter to
generate high-quality instances for selection. The optimization process involves
jointly training the instance selector, the instance classifier, and the instance
generator. To validate the effectiveness of our approach, we experiment on both
synthetic noisy datasets (i.e., noisy PASCAL VOC 2007 [14] and MS-COCO [28])
and real noisy wheat head dataset [8,9]. The main contributions are as follows:

– We contribute a novel view for learning object detectors with inaccurate
bounding boxes by treating an object as a bag of instances;

– We present an Object-Aware Multiple Instance Learning approach, featured
by object-aware instance selection and object-aware instance extension;

– OA-MIL exhibits generality on off-the-shelf object detectors and obtains
promising results on the synthetic and the real noisy datasets.

2 Related Work

Learning With Noisy Labels. Training accurate DNNs under noisy labels has
been an active research area. A major line of research focuses on the classification
task, and develops various techniques to deal with noisy labels, such as sample
selection [18,21], label correction [32,37], and robust loss functions [16,50]. Re-
cently, much effort [1,5,25,33,47] has been devoted to the object detection task.
Simon et al. [5] first investigate the impact of different types of label noise on
object detection, and propose a per-object co-teaching method to alleviate the
effect of noisy labels. On the other hand, Li et al. [25] propose a learning frame-
work that alternately performs noise correction and model training to tackle
noisy annotations, where the noisy annotations consist of noisy category labels
and noisy bounding boxes. Xu et al. [47] further introduce a meta-learning based
approach to tackle noisy labels by leveraging a few clean samples.

In contrast to previous works, we emphasize learning object detectors with
inaccurate bounding boxes and contribute a novel Object-Aware MIL view to
addressing this problem. In addition, we do not assume the accessibility to clean
box annotations as previous work [47] does.
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Weakly-Supervised Object Detection (WSOD). WSOD refers to learning
object detectors with only image-level labels. The majority of previous works
formulate WSOD as a multiple instance learning (MIL) problem [13], where
each image is considered as a “bag” of instances (instances are tentative object
proposals) with image-level label. Under this formulation, the learning process
alternates between detector training and object location estimation. Since MIL
leads to a non-convex optimization problem, solvers may get stuck in local op-
tima. Accordingly, much effort [2,7,11,35,36,38] has been made to help the solu-
tion escape from local optima. Recently, deep MIL methods [3] emerge. However,
the non-convexity problem remains. To address this problem, various techniques
have been developed, including spatial regularization [3,12,44], context informa-
tion [22,46], and optimization strategy [12,24,39,44,45]. For example, Zhang et
al. [48] tackle noisy initialized object locations in WSOD and propose a self-
directed localization network to identify noisy object instances.

In this work, we tackle learning object detectors with noisy box annotations,
which is different from WSOD where only image-level labels are given. Despite
we also formulate object detection as a MIL problem, we remark that our for-
mulation is significantly different from WSOD in two aspects: i) we establish
the concept of the bag on the object instead of on the image, which encodes
object-level information; ii) we dynamically construct the object bag instead of
using a fixed one as in WSOD, yielding a higher performance upper bound.

Semi-Supervised Object Detection (SSOD). SSOD aims to train object
detectors with a large scale of image-level annotations and a few box-level anno-
tations. Some prior works [40,41,42] address SSOD by knowledge transfer, where
the information is transferred from source classes with bounding-box labels to
target classes with only image-level labels. Other than the knowledge transfer
paradigm, a recent work [15] adopts a training-mining framework and proposes
a noise-tolerant ensemble RCNN to eliminate the harm of noisy labels.

However, previous SSOD methods generally assume the availability of clean
bounding box annotations. In contrast, we only assume the accessibility to noisy
bounding box annotations.

3 Object-Aware Multiple Instance Learning

In this work, we aim to learn a robust object detector with inaccurate bounding
box annotations. Motivated by the observation that classification maintains high
accuracy under noisy box annotations (Fig. 2), we suggest leveraging classifica-
tion to guide localization. Intuitively, instead of using the inaccurate ground-
truth boxes, we expect the classification branch to select more precise boxes for
training. This idea derives the concept of object bag, where each object is formu-
lated as a bag of instances for selection. Build upon the object bag, we present an
Object-Aware Multiple Instance Learning approach that features object-aware
instance selection and object-aware instance extension. In the following, we first
introduce some preliminaries about MIL. Then, we present our Object-Aware
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Multiple Instance Learning formulation. Finally, we show how to deploy our
method on modern object detectors like FasterRCNN [34] and RetinaNet [27].

3.1 Preliminaries

Given image-level labels, an MIL method [7,45] in WSOD treats each image as
a bag of instances, where instances are tentative object proposals. The learning
process alternates between instance selection and instance classifier learning.

Formally, let Bi ∈ B denote the ith bag (image) and B denote the bag set
(all training images). Each Bi is associated with a label yi ∈ {1,−1}, where
yi indicates whether Bi contains positive instances. Also, let bj

i denote the jth

instance of bag Bi (i.e., b
j
i encodes the coordinates of an instance), where j ∈

{1, 2, . . . , Ni} and Ni is the number of instances in Bi. With the definitions
above, the instance selector f(bj

i , ωf ) with parameter ωf is applied to a positive

bag Bi to select the most positive instance bj∗

i , the index j∗ is obtained by:

j∗ = argmax
j

f(bj
i , ωf ), (1)

where the instance selector f(bj
i , ωf ) takes an instance bj

i as input and outputs

a confidence score that is in the range of [−1, 1]. Then, the selected instance bj∗

i

is used to train the instance classifier g(bj
i , ωg) with parameter ωg. The overall

loss function is defined as:

L(B, ωf , ωg) =
∑
i

Lf (Bi, ωf ) + Lg(Bi,b
j∗

i , ωg), (2)

where Lf and Lg are the loss of instance selector and instance classifier, respec-
tively. Typically, Lf is defined as a standard hinge loss:

Lf (Bi, ωf ) = max(0, 1− yi max
j

f(bj
i , ωf )). (3)

And the instance classifier loss Lg is defined as log-loss for classification.

3.2 Object-Aware MIL Formulation

Despite we formulate object detection as a MIL problem, we argue that the ex-
isting MIL paradigm in WSOD could not address the learning problem under
noisy box annotations. First, since an image is defined as a bag in WSOD, the
localization prior of objects is ignored. Second, the bags in WSOD are simply a
collection of object proposals produced by off-the-shelf object proposal genera-
tors like selective search [43], which limits the detection performance.

Different from WSOD, in the context of our object bag, two challenges need
to be solved: i) how to select accurate instance in each object bag for training ;
and ii) how to generate high-quality instances for each object bag.

To address the above challenges, we introduce an Object-Aware MIL formula-
tion, which jointly optimizes the instance selector, the instance classifier, and the
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Fig. 3: An overview of our OA-MIL formulation. We augment the standard
object detector (a) with an instance selector, forming our object detector (b). (c)
illustrates the pipeline of OA-MIL. We first construct object bags based on the
outputs of the instance generator (green and blue boxes), where the inaccurate
ground-truth box (red box) is formulated as a positive bag Bi and the back-
ground box (blue box) is treated as a negative bag Bj . Then, object-aware in-
stance extension is applied to obtain an extended bag set {B0

i , B
1
i , . . . , B

N
i , Bj}.

Based on this bag set and the noisy ground-truth instance zi, we adopt object-
aware instance selection to select the best positive instance b∗

i for training object
detector (including instance selector, instance classifier, and instance generator).

instance generator. In the following, we first give the definition of object bag.
Then, we introduce object-aware instance selection and object-aware instance
extension, where the former is designed to select the accurate instance, while
the latter aims to produce a set of high-quality instances for selection. Finally,
we describe how to train the instance selector, the instance classifier, and the
instance generator. Fig. 3 illustrates the pipeline of our OA-MIL formulation.

Bag Definition. We reuse the bag symbol in Sec. 3.1. But the definition of
bag is different, i.e., we treat each object as a bag. We denote Bi ∈ B as the
ith bag (object), and B denotes the bag set (all objects in training images).
A label yi ∈ {1,−1} is attached to each bag Bi. As illustrated in Fig. 3, we
treat inaccurate ground-truth box as a positive bag Bi with yi = 1, and the
background box is treated as a negative bag Bj with yj = −1. Suppose bag

Bi contains Ni instances, we denote bj
i as the jth instance of bag Bi, where

j ∈ {1, . . . , Ni}. With object bag defined above, we naturally introduce Eq. (3)
to train the instance selector.

Object-Aware Instance Selection. Since we treat each inaccurate ground-
truth box as a bag of instances, the quality of the selected instance is essential for
training an accurate object detector. Intuitively, we expect the selected instance
covers the actual object as tight as possible. However, as the instance selector
has poor discriminative ability in the early stage of training, the instance clas-
sifier and instance generator will inevitably suffer from the low-quality positive
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instance. In some cases, poor instance initialization could render failure during
training. As the inaccurate ground-truth box provides a strong prior of object
localization, we jointly consider it and the selected instance to obtain a more
suitable positive instance for training.

Specifically, we denote zi as the inaccurate ground-truth instance. We per-

form object-aware instance selection by merging zi and bj∗

i as follows:

b∗
i = φ(f(bj∗

i , ωf )) · bj∗

i + (1− φ(f(bj∗

i , ωf ))) · zi, (4)

where bj∗

i is the most positive instance selected by the instance selector, and φ

is a mapping function, which adaptively assigns the coefficient for bj∗

i and zi.
Recall that our goal is to select high-quality positive instances for training,

thus we expect φ(·) to satisfy two conditions. First, higher weights should be

assigned to bj∗

i when f(bj∗

i , ωf ) has large value, because it indicates the confi-

dence of the positive instance bj∗

i . Second, φ(·) should balance the weights of

bj∗

i and zi instead of relying on bj∗

i when f(bj∗

i , ωf ) is close to 1. To satisfy the
above conditions, we adopt a bounded exponential function as follows:

φ(x) = min(xγ , θ), (5)

where γ and θ are hyper-parameters, and x ∈ [0, 1]. A key property of Eq. (5) is
that the ascent speed and the upper bound of φ are controllable.

Object-Aware Instance Extension. The quality of instances is another fac-
tor that affects the training process. In our formulation, the bags are dynamically
constructed based on the outputs of the instance generator. Thus, the quality
of bag instances can not always be guaranteed. Fortunately, the instances in-
side a positive bag are homogeneous, i.e., instances are closely related to each
other both on spatial location and class information. Therefore, it is possible to
promote the quality of a positive bag by extending the positive instances.

We present two strategies for instance extension. The first strategy is to ob-
tain new positive instances by recursively constructing positive bags. Specifically,
we first obtain the initial object bag based on the noisy ground-truth boxes, then
we use the most positive instance selected by Eq. (4) to construct a new positive
bag. The process repeats until reaching the termination condition. This strategy
is generic and applicable to any existing object detectors. The second strategy
is to refine the positive instances in a multi-stage manner [4], which is suitable
for object detectors that feature with a bounding box refinement module (e.g.,
FasterRCNN [34]). The extended object bags are subsequently used to train the
instance selector. Note that we do not extend negative bags.

Suppose we have conducted N times of instance extension, which produces
a set of extended positive bags {B0

i , B
1
i , . . . , B

N
i }, where B0

i denotes the initial
object bag Bi (As shown in Fig. 3). We utilize the extended object bags to
optimize the instance selector, the loss thus becomes:

Lf ({Bk
i }, ωf ) =

∑
k

Lf (B
k
i , ωf ), (6)

where k ∈ {0, 1, . . . , N} only if Bi is a positive bag.
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OA-MIL Training. Our OA-MIL involves jointly optimizing the instance se-
lector, instance classifier, and the instance generator. The instance selector is
trained using Eq. (6). As the instance classifier g (with parameter ωg) is used to
classify object, we adopt the binary-log-loss to train it:

Lg(Bi,b
∗
i , ωg) = −

∑
j

log(yi,j · (g(bj
i , ωg)−

1

2
) +

1

2
), (7)

where g(bj
i , ωg) ∈ (0, 1), which represents the probability of bj

i contains objects
with positive class. yi,j is defined as:

yi,j =


+1, if yi = 1and IoU(bj

i ,b
∗
i ) ≥ 0.5

−1, if yi = 1and IoU(bj
i ,b

∗
i ) < 0.5

−1, if yi = −1

, (8)

where IoU denotes the Intersection over Union between two instances. Note that
the loss of each instance becomes log(g(bj

i , ωg)) when yi,j = 1, and log(1 −
g(bj

i , ωg)) otherwise.

One major difference between our MIL and WSOD MIL is that we jointly
train a learnable instance generator, which is crucial for dealing with inaccurate
bounding boxes. The loss function of the instance generator is as follows:

Lϕ(B, ωϕ) =
∑
i

1(Bi) · Lreg(Bi,b
∗
i , ωϕ), (9)

where ωϕ is the parameters of instance generator, 1(Bi) equals 1 if Bi is a
positive bag, otherwise 1(Bi) is 0 because a negative bag does not correspond
to any actual objects, and Lreg is defined as:

Lreg(Bi,b
∗
i , ωϕ) =

∑
j

δ(yi,j) · ℓreg(bj
i ,b

∗
i ), (10)

where δ(·) is the unit-impulse function (δ(yi,j) equals to 1 when yi,j is 1, other-
wise 0), and ℓreg is a regression loss like ℓ1 loss or smooth ℓ1 loss [34].

To summarize, the overall loss function is formulated as:

L(B, ωf , ωg, ωϕ) = λ
∑
i

∑
k

Lf (B
k
i , ωf ) +

∑
i

Lg(B
0
i ,b

∗
i , ωg)

+
∑
i

1(B0
i ) · Lreg(B

0
i ,b

∗
i , ωϕ),

(11)

where λ is a balance parameter, B is the extended object bags set, B0
i is the

initial object bag, and b∗
i is selected by Eq. (4).

3.3 Deployment to Off-the-Shelf Object Detectors

We remark that our formulation is general and is not limited to specific object de-
tectors. To demonstrate the generality of our method, we apply our method on a
two-stage detector—FasterRCNN [34] and a one-stage detector—RetinaNet [27].
Here we introduce the deployment procedure on FasterRCNN. It includes two
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10% Box Noise 20% Box Noise

30% Box Noise 40% Box Noise

(a) Noisy VOC dataset (b) GWHD dataset

Fig. 4: Examples of the inaccurate bounding boxes (red boxes) on VOC
and GWHD dataset. The clean ground-truth boxes are in green.

steps, the first step is to construct object bags and the second step is to apply
OA-MIL on FasterRCNN. More details can be found in the supplementary.

Bag Construction. We construct object bags based on the outputs of the
second stage of FasterRCNN. Specifically, we treat each inaccurately annotated
object as a positive bag, where instances are positive anchors (object proposals)
corresponding to a specific object.

OA-MIL Deployment. The instance selector and the instance classifier share
the same classifier. The regressor in the second stage is treated as the instance
generator. We perform object-aware instance extension by multi-stage refine-
ment, which produces a set of extended object bags {B0

i , B
1
i , . . . , B

N
i }. Then,

object-aware instance selection is applied to select the best instance b∗
i , where

b∗
i is used to train the instance generator (regressor), the instance selector (clas-

sifier), and the object detector (classifier). We follow Eq. (11) to train the second
stage of FasterRCNN. Note that the training objective of RPN is the same as [34].

Implementation Details. We implement our method on FasterRCNN [34]
with ResNet50-FPN [19,26] backbone. Following common practices [17], the
model is trained with “1×” schedule. The hyper parameters are set as γ = 7.5,
θ = 0.85, N = 4, and λ is selected from {0.01, 0.1} (depending on datasets and
noise levels). Our implementation is based on MMDetection toolbox [6].

4 Results and Discussions

4.1 Datasets and Evaluation Metrics

Synthetic Noisy Dataset. Modern object detection datasets are delicately
annotated and contain few inaccurate bounding boxes. Thus, we simulate noisy
bounding boxes by perturbing the clean ones on two object detection datasets,
including PASCAL VOC 2007 [14] and MS-COCO [28].

Box Noise Simulation.We simulate noisy bounding boxes by perturbing clean
boxes. Specifically, let (cx, cy, w, h) denote the center x coordinate, center y
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Table 1: Performance comparison on the PASCAL VOC 2007 test set. The eval-
uation metric is mAP@0.5 (%). The best performance is in boldface.

Model Method
Box Noise Level

10% 20% 30% 40%

FasterRCNN

Noisy-FasterRCNN 76.3 71.2 60.1 42.5
KL loss [20] 75.8 72.7 64.6 48.6
Co-teaching [18] 75.4 70.6 60.9 43.7
SD-LocNet [48] 75.7 71.5 60.8 43.9

Ours 77.4 74.3 70.6 63.8

RetinaNet
Noisy-RetinaNet 71.5 67.5 57.9 45.0
FreeAnchor [49] 73.0 67.5 56.2 41.6

Ours 73.1 69.1 62.9 53.4

Clean Model
Clean-FasterRCNN 77.2 77.2 77.2 77.2
Clean-RetinaNet 73.5 73.5 73.5 73.5

coordinate, width, and height of an object. We simulate an inaccurate bounding
box by randomly shifting and scaling the box as follows:{

ĉx = cx+∆x · w, ĉy = cy +∆y · h,
ŵ = (1 +∆w) · w, ĥ = (1 +∆h) · h,

(12)

where ∆x, ∆y, ∆w, and ∆h follow the uniform distribution U(−r, r), r is the
box noise level. We simulate various box noise levels ranging from 10% to 40%.
For example, when r = 40%, ∆x, ∆y, ∆w, and ∆h are in the range of (−0.4, 0.4).
Note that Eq. (12) is performed on every bounding box in the training data.
Fig. 4a shows examples of the synthetic inaccurate bounding boxes under differ-
ent box noise level r’s on the VOC dataset, where r ranges from 10% to 40%.

Real Noisy Dataset.We also evaluate our approach on the Global Wheat Head
Detection (GWHD) dataset [8,9]. This dataset includes 3.6K training images,
1.4K validation images, and 1.3K test images. It has two versions of training
data, the first “noisy” challenge version1 (inaccurate bounding box annotations)
and the second “clean” version (calibrated clean annotations). Specifically, the
“noisy” version contains around 20% noisy ground-truth boxes and the rest 80%
boxes are the same as the “clean” version. We separately train on the “noisy”
and “clean” training data to validate our approach. Fig. 4b shows some examples
of the real inaccurate bounding boxes and the calibrated clean boxes.

Evaluation Metric. For VOC and COCO, we use mean average precision
(mAP@.5) and mAP@[.5,.95] as evaluation metrics. Regarding GWHD dataset,
we follow the GWHD Challenge 20212 to use Average Domain Accuracy (ADA)
as the evaluation metric.

2 https://www.aicrowd.com/challenges/global-wheat-challenge-2021



Robust Object Detection With Inaccurate Bounding Boxes 11

Table 2: Performance comparison on the MS-COCO dataset.

Method
20% Box Noise Level 40% Box Noise Level

AP AP 50AP 75APSAPMAPL AP AP 50AP 75APSAPMAPL

FasterRCNN

Clean-FasterRCNN 37.9 58.1 40.9 21.6 41.6 48.7 37.9 58.1 40.9 21.6 41.6 48.7
Noisy-FasterRCNN 30.4 54.3 31.4 17.4 33.9 38.7 10.3 28.9 3.3 5.7 11.8 15.1
KL loss [20] 31.0 54.3 32.4 18.0 34.9 39.5 12.1 36.7 3.7 6.2 13.0 17.4
Co-teaching [18] 30.5 54.9 30.5 17.3 34.0 39.1 11.5 31.4 4.2 6.4 13.1 16.4
SD-LocNet [48] 30.0 54.5 30.3 17.5 33.6 38.7 11.3 30.3 4.3 6.0 12.7 16.6

Ours 32.1 55.3 33.2 18.1 35.8 41.618.6 42.6 12.9 9.2 19.9 26.5

RetinaNet

Clean-RetinaNet 36.7 56.1 39.0 21.6 40.4 47.4 36.7 56.1 39.0 21.6 40.4 47.4
Noisy-RetinaNet 30.0 53.1 30.8 17.9 33.7 38.2 13.3 33.6 5.7 8.4 15.9 18.0
FreeAnchor [49] 28.6 53.1 28.5 16.6 32.2 37.0 10.4 28.9 3.3 5.8 12.1 14.9

Ours 30.9 54.0 32.3 18.5 34.9 39.619.2 45.2 12.0 11.3 23.0 24.9

4.2 Comparison With State of the Art

We compare our method with several state-of-the-art approaches [18,20,48] on
PASCAL VOC 2007 [14], MS-COCO [28], and GWHD [8,9] datasets. Note that,
we denote Clean-FasterRCNN and Noisy-FasterRCNN as FasterRCNN models
trained under clean and noisy training data with the default setting, respec-
tively. Similarly, Clean-RetinaNet and Noisy-RetinaNet denote RetinaNet mod-
els trained under clean and noisy training data, respectively.

Results on the VOC 2007 dataset. Table 1 shows the comparison results
on the VOC 2007 test set. For FasterRCNN, we observe that inaccurate bound-
ing box annotations significantly deteriorate the detection performance of the
vanilla model. On the contrary, our approach is more robust to noisy bounding
boxes and outperforms other methods by a large margin under high box noise
levels, e.g., 30% and 40% box noise. In addition, Co-teaching and SD-LocNet
only slightly improve the detection performance, which indicates that small-loss
sample selection and sample weight assignment can not well tackle noisy box an-
notations. For RetinaNet, we compare our approach with the vanilla RetinaNet
model and FreeAnchor [49]. As shown in Table 1, our approach still achieves con-
sistent improvement over the vanilla model, which indicates that our approach
is effective on both two-stage and one-stage detectors.

Results on the MS-COCO Dataset. The comparison results on the MS-
COCO dataset are reported in Table 2. For FasterRCNN, our approach achieves
considerable improvements over the vanilla model and performs favorably against
state-of-the-art methods. For example, under 40% box noise, the vanilla model
suffers from catastrophic performance drop, e.g., AP 50 drops from 58.1 to 28.9.
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Table 3: Comparison results on the GWHD validation and test set, where models
are trained on “noisy” and “clean” training data, respectively. The evaluation
metric is ADA. FRCNN denotes FasterRCNN.

Model Method
Trained on “Noisy” GWHDTrained on “Clean” GWHD
Val ADA Test ADA Val ADA Test ADA

FRCNN

Vanilla FRCNN 0.608 0.509 0.632 0.511
KL Loss [20] 0.607 0.496 0.631 0.507
Co-teaching [18] 0.624 0.491 0.631 0.504
SD-LocNet [48] 0.621 0.498 0.626 0.512

Ours 0.639 0.526 0.658 0.530

RetinaNet
Vanilla RetinaNet 0.607 0.494 0.622 0.503
FreeAnchor [49] 0.619 0.517 0.635 0.525

Ours 0.621 0.516 0.640 0.527

On the other hand, our approach significantly boosts the detection performance
across all metrics, achieving 8.3%, 13.7%, and 9.6% improvements on AP , AP 50,
and AP 75, respectively. Co-teaching and SD-LocNet, however, still can not well
address inaccurate bounding box annotations, but KL Loss slightly improves the
performance under 20% and 40% box noise. In addition, we observe that objects
with different sizes suffer similarly under different noise levels. For RetinaNet,
our approach also obtains consistent improvements. For example, our approach
improves the performance of the vanilla RetinaNet by 5.9%, 11.6%, and 6.3%
on AP , AP 50, and AP 75 under 40% box noise, respectively.

Results on the GWHD Dataset. Here we report the results on both noisy
and clean training data.

Results on the “Noisy” GWHD dataset. Table 3 shows the comparison re-
sults. Deploying our method on FasterRCNN boosts the Val ADA of the vanilla
model from 0.608 to 0.639 and Test ADA from 0.509 to 0.526. Interestingly,
our approach even performs better than the vanilla model that trained on clean
training data (0.639 vs. 0.632 on Val ADA, 0.526 vs. 0.511 on Test ADA). In addi-
tion, Co-teaching and SD-LocNet improve the Val ADA but deteriorate the Test
ADA, we infer that the large domain gap between validation and test data leads
to the controversy. For RetinaNet, our approach obtains moderate improvements
and performs favorably against FreeAnchor. Note that FreeAnchor performs well
on “Noisy” GWHD because the clean ground-truth boxes dominate this dataset
(around 80% boxes are clean), which is different from the synthetic VOC and
COCO datasets where noisy ground-truth boxes are the majority.

Results on the “Clean” GWHD dataset. Table 3 shows that our approach can
further improve the detection performance when trained on clean data. The rea-
son may be that our OA-MIL exploits the information between object instances,
thus strengthening the discriminative capability of the detection model. Specifi-
cally, we advance the performance of the vanilla FasterRCNN by 2.6% and 1.7%
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Table 4: Ablation study on the VOC 2007 test set and COCO validation set.
The evaluation metric is mAP@0.5 (%).

No. Method IS Loss OA-IS OA-IE
VOC 2007 COCO

10% 20% 30% 40% 20% 40%

B1 Vanilla FasterRCNN 76.3 71.2 60.1 42.5 54.3 28.9

B2
OA-MIL FasterRCNN

✓ 77.1 73.3 66.9 56.0 54.6 32.6
B3 ✓ ✓ 77.2 74.2 70.2 63.3 55.2 39.8
B4 ✓ ✓ ✓ 77.4 74.3 70.6 63.8 55.3 42.6

on Val ADA and Test ADA, respectively. Regarding RetinaNet, our approach
outperforms the vanilla model by 1.8% on Val ADA and 2.4% on Test ADA,
respectively. In addition, our approach can also cooperate with the runner-up
solution [29,30] of the GWHD2021 challenge2, which adopts the idea of dynamic
network [31] to improve wheat head detection.

4.3 Ablation Study

Here we investigate the effectiveness of each component in our approach, in-
cluding: (i) our object bag formulation, i.e., training object detector with in-
stance selection loss (IS Loss), where the loss is computed based on object bag;
(ii) object-aware instance selection (OA-IS); (iii) object-aware instance extension
(OA-IE). Table 4 shows the results. B1 is the performance of the vanilla Faster-
RCNN trained under different box noise levels. From B2 to B4, we gradually add
IS Loss, OA-IS, and OA-IE into training. In addition, the analysis of parameter
sensitivity (e.g., γ and θ in Eq. (5)) can be found in the supplementary.

Effectiveness of Objec Bag Formulation. Interestingly, simply training un-
der our object bag formulation significantly boosts the mAP performance of
FasterRCNN on the VOC 2007 dataset across several box noise levels. For in-
stance, our object bag formulation achieves 6.8% and 13.5% improvements under
30% and 40% box noise level, respectively. As for the COCO dataset, we still
obtains moderate improvements. An intuitive explanation is that the instance
selector is forced to select high-quality instances (e.g., instance that covers the
actual object more tightly) to minimize the loss function. As a consequence, the
object detector benefits from the joint optimization process.

Effectiveness of OA-IS. Applying OA-IS further improves the detection per-
formance on the VOC and COCO datasets, especially under high box noise
levels. For example, under 40% box noise level, OA-IS boosts the performance
from 56.0 to 63.3 on the VOC dataset and from 32.6 to 39.8 on the COCO
dataset. To understand OA-IS more intuitively, we visualize the instances se-
lected by OA-IS in Fig. 5. It is clear that the selected instances cover the objects
more tightly than the noisy ground-truth boxes. Although the selected instances
are not perfect, they provide more precise supervision signals for training the
instance classifier and the instance generator.
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Fig. 5: Examples of the selected instances (red boxes). Noisy ground-truth
boxes are in yellow and the clean ground-truth boxes are in green.

(a) Qualitative results (b) Failure cases

Fig. 6: (a) Qualitative results of OA-MIL FasterRCNN (red boxes) and vanilla
FasterRCNN (yellow boxes) on the COCO dataset. The ground-truth boxes are
in green. (b) Failure cases, e.g., missing detections on small/overlapped objects.

Effectiveness of OA-IE. OA-IE is designed to improve the quality of the bag
instances. We observe that the impact of OA-IE is minor under low box noise
levels. The reason is likely that the quality of bag instances is relatively high
under low box noise situations. Nevertheless, OA-IE still brings improvement
under high noise levels. For example, it improves the detection performance
from 39.8 to 42.6 on the COCO dataset under 40% box noise.

Qualitative Results. Fig. 6a illustrates the qualitative results of the COCO
dataset. The vanilla FasterRCNN tends to predict bounding boxes that cover
object parts or include background areas. Instead, our method can predict more
accurate bounding boxes. In addition, some failure cases are shown in Fig. 6b.
Our approach may suffer from overlapped objects or small objects.

5 Conclusion

In this work, we tackle learning robust object detectors with inaccurate bounding
boxes. By treating an object as a bag of instances, we present an Object-Aware
Multiple Instance Learning method featured with object-aware instance selection
and object-aware instance extension. Our approach is general and can easily
cooperate with modern object detectors. Extensive experiments on the synthetic
noisy datasets and real noisy GWHD dataset demonstrate that OA-MIL can
obtain promising results with inaccurate bounding box annotations.

For future work, we plan to incorporate the attributes of the objects to
address the limitation of OA-MIL.
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