
Cross-Modality Knowledge Distillation Network
for Monocular 3D Object Detection -

Supplementary Materials

Yu Hong1, Hang Dai2*, and Yong Ding1*

1 Zhejiang University, Zhejiang, China
2 MBZUAI, Abu Dhabi, UAE

yuhong 1999@zju.edu.cn hang.dai@mbzuai.ac.ae dingy@vlsi.zju.edu.cn

* Corresponding authors.

1 Details of BEV Feature Learning

In this part, we describe the detailed process of generating the Bird’s-Eye-View
(BEV) feature maps in the two branches of our cross-modality knowledge distil-
lation network. We take the detailed settings on KITTI [3] with ResNet-101 [4]
backbone as an example for description.

1.1 LiDAR-based BEV Feature Learning

Voxelization. We use the LiDAR-based 3D detector SECOND [10] to generate
the LiDAR BEV feature map. Given the point clouds of range (L,W,H), where
L, W and H are the length, width and height of the 3D space corresponding to
the x, y and z axes respectively, we first filter out the points that can be projected
onto the image plane, i.e., field of view (FOV) points. Then, we subdivide the
3D space into equal 3D voxels of size (dx, dy, dz) to obtain the original voxels of
size (L/dx,W/dy,H/dz). In this paper, the range for the point clouds in the 3D
space is set to [2.0, 46.8]× [−30.08, 30.08]× [−3.0, 1.0] meters. The voxel size is
set to (0.04, 0.04, 0.1) meters, and the size of the original LiDAR voxel volume
is (1120, 1504, 40).
Voxel Feature Extraction. The features of the original LiDAR voxels are
the mean values of the point coordinates in each voxel, which are denoted as
F̃ v
L ∈ R1120×1504×40×4. After voxelization, F̃ v

L is fed to a sparse 3D convolution
backbone, gradually converting the original voxel features into higher dimen-
sional space with 1×, 2×, 4×, 8× down-sample rates using a series of sparse 3D
convolution blocks. The output features of the voxel backbone are denoted as
F v
L ∈ R140×188×2×64.

Map to BEV. The voxel features F v
L ∈ R140×188×2×64 are collapsed to a 2D

BEV feature map by stacking the features in height dimension to obtain the
LiDAR BEV features F bev

L ∈ R140×188×2∗64.
We illustrate the BEV feature map generation process of the LiDAR-based

method in the top row of Fig. 1.

2 Y. Hong et al.

(a) LiDAR-based Branch

(b) Image-based Branch

Y

Z

Input Points
 LiDAR Voxel Volume

Map to BEV

LiDAR Voxel Features

Voxelization

X

LiDAR BEV Features

Voxel Feature
Extraction

Voxel
 Backbone

Input Image

Image Feature
Extraction

 Discrete Depth Bins

Channel
Reduction

Depth Distribution

Estimation

Outer
Product

Image BEV Features

V

D

U
Y

X
Z

Image Coordinate LiDAR Coordinate

Image Frustum Grid

Image
 Backbone

Image Voxel Features

Map to BEV
Interpolation

Fig. 1. BEV feature map generation. (a) The LiDAR-based branch. (b) The image-
based branch.

1.2 Image-based BEV Feature Learning

Image Feature Extraction. We follow CaDDN [8] to generate the image BEV
feature map. Given the monocular image I ∈ RW×H×3, where W and H are
around 1242 and 375 in KITTI [3], we first use the image backbone ResNet-101
[4] on it to extract the image features. And we use the intermediate features
with down-sample rate 4 from layer1 as the image features FI ∈ RWI×HI×C ,
where WI = 311, HI = 94 and C = 256.
Voxelization via Depth Distribution Estimation. The image features FI ∈
RWI×HI×C go through a channel reduction network to obtain F̂I ∈ RWI×HI×C′

,
where C ′ = 64 is the number of reduced feature channels. For each position in F̂I ,
we predict its depth in a classification manner. Specifically, the continuous depth
range [dmin, dmax] is subdivided into D discrete bins using linear-increasing dis-
cretization (LID) as:

di = dmin +
dmax − dmin

D(D + 1)
· i(i+ 1), i ∈ [0, D] (1)

where di is the discrete depth value of the i-th depth bin, dmin = 2.0m, dmax =
46.8m and D = 80. We use the depth distribution estimation head DeepLabV3
[1] after the output features of the image backbone F out

I ∈ RW out
I ×Hout

I ×Cout

where W out
I = 156, Hout

I = 47 and Cout = 2048 to predict pixel-wise depth

distribution Ddepth ∈ RWI×HI×D for each location in F̂I . We then calculate

the outer product of F̂I ∈ RWI×HI×C′
and Ddepth ∈ RWI×HI×D to construct

a frustum grid G ∈ RWI×HI×D×C′
, where the feature of each location in F̂I is

placed at each predicted depth bin and weighted by the predicted probabilities.
The frustum grid G is not in the same geometry shape as the voxel volume in the
LiDAR-based branch and it is represented in image coordinate, so we need to

CMKD 3

transform it into a cuboid voxel volume in the LiDAR coordinate. Specifically, we
first construct a voxel volume for the image-based branch in LiDAR coordinates,
where the range of the 3D space is the same as the LiDAR branch, and the voxel
size is set to (0.16, 0.16, 0.16) meters. For each position in the image voxel volume,
we project its center (x, y, z) into the image coordinate to get (u, v, d), and apply
a trilinear interpolation operation to obtain the features, and we thus get the
voxel features F v

I ∈ R280×376×25×64 in the image branch.

Map to BEV. The voxel features F v
I ∈ R280×376×25×64 are collapsed to a

2D BEV feature map by stacking the features in height dimension to obtain
F̃ bev
I ∈ R280×376×25∗64, which then goes through a channel reduction network to

get the image BEV features F bev
I ∈ R280×376×64.

We illustrate the BEV feature map generation process for the image-based
method in the bottom row of Fig. 1.

2 Details of Domain Adaptation Module

The image BEV features F bev
I are different from LiDAR BEV features F bev

L

in spatial-wise and channel-wise feature distribution due to the fact that they
come from different input modalities with different backbones. We employ a
domain adaptation (DA) module to align the feature distribution of F bev

I to
that of F bev

L and enhance F bev
I at the meantime. Since the feature dimension of

F bev
I ∈ R280×376×64 may not match with that of F bev

L ∈ R140×188×128, we first
apply a convolution layer on F bev

I to align the BEV feature dimension:

F bev′

I = Conv(F bev
I) (2)

where F bev′

I ∈ R140×188×128 has the same shape as F bev
L . Then, we stack five Self-

Calibrated Blocks [6] after F bev
I to apply spatial-wise and channel-wise transfor-

mations:

F̂ bev
I = DA(F bev′

I) (3)

where F̂ bev
I ∈ R140×188×128 are the enhanced BEV features after the DA module.

Fig. 2 illustrates the detailed network architecture of the Self-Calibrated
Block. The input X ∈ RH×W×C is first split into two portions X1 ∈ RH×W×C

2

and X2 ∈ RH×W×C
2 through two 1× 1 convolution layers:

X1 = Conv1×1(X) (4)

X2 = Conv1×1(X) (5)

A branch ofX1 goes through a series of layers for the self-attentionA ∈ RH×W×C
2 :

X4 = Up(Conv3× 3(Down(X1))) (6)

A = Sigmoid(X1 +X4) (7)

4 Y. Hong et al.

+ σ

+

σ

Element-wise Summation

Element-wise Multiplication

Sigmoid Function

Self-Calibration

Fig. 2. Self-Calibrated Block

where Down denotes a 4× average pooling layer and Up denotes an interpolation
layer. X1 itself goes through a 3× 3 convolution layer to get X3 ∈ RH×W×C

2 :

X3 = Conv3×3(X1) (8)

which is weighted by the self-attention A ∈ [0, 1]H×W×C
2 and then goes through

another 3× 3 convolution layer to get X5 ∈ RH×W×C
2 :

X5 = Conv3×3(X3 ·A) (9)

X2 goes through a 3× 3 convolution layer to get X6 ∈ RH×W×C
2 :

X6 = Conv3×3(X2) (10)

And finally we concatenate X5 ∈ RH×W×C
2 and X6 ∈ RH×W×C

2 for the output
Y ∈ RH×W×C :

Y = Concat(X5, X6) (11)

Note that the convolution layers are followed by BatchNorm and ReLU opera-
tions.

3 Generalization Study with Different Backbones

In this part, we conduct experiments on the generalization ability of CMKD
using different student models. For the network structure after the BEV feature
map, we simply use the most basic one in 3D detection, so we mainly change
the backbone of the model for comparison. Specifically, we choose backbones
with different weights and different structures and compare the performance
of CMKD, including running speed, running memory and 3DAP . On the one
hand, we want to show the performance of CMKD using backbones with different

CMKD 5

Table 1. Generalization study of CMKD using backbones with different weights and
different structures.

Backbone Speed (fps) Memory (G)
3DAP

Easy Moderate Hard

ResNet-101 [4] 7.5 4.3 30.2 21.5 19.4
ResNet-50 [4] 10.1 4.1 30.4 21.3 19.0
EfficientNet-b5 [9] 20.8 2.2 30.8 20.4 18.5
EfficientNet-b3 [9] 21.6 2.1 30.7 20.5 17.9
ConvNeXt-B [7] 23.6 2.8 30.6 20.7 18.5
ConvNeXt-S [7] 26.7 2.4 29.7 20.2 17.8
MobileNet [5] 30.0 2.6 29.8 20.5 17.8

structures, on the other hand, we want to show a trade-off comparison of speed
and accuracy. The running speed and memory are tested on a single NVIDIA
3090 GPU with the batch size of 1, the 3DAP is tested on KITTI val.

The results are shown in Tab. 1. We use backbones with different weights
and different structures for different versions of CMKD. Among them, there are
both heavy and deep models (running speed < 10 fps), and light and shallow
models (running speed > 20 fps, which can meet the requirement for real-time
applications). As can be seen from the table, for the Easy class, the performance
gap between different models is not large, and some light-weight models perform
even better than the heavy-weight ones. For the Moderate and Hard classes,
the heavy-weight models perform better than the light-weight ones, but the
performance of the light-weight models is still not bad.

The above experiments, on the one hand, prove that our framework has good
generalization performance and can cooperate with various backbones with dif-
ferent structures and weights to meet the needs of different application scenarios.
On the other hand, it also highlights our main point of this work, that is, what
we emphasize is the idea of our cross-modality knowledge distillation (CMKD)
framework, not a specific model to be used in the framework.

4 Potential Limitation of CMKD: Soft Label Quality
Matters

To make our work more comprehensive and complete, we proactively explore
the limitations of CMKD and provide our solution. We notice that CMKD may
have the following limitation, i.e., soft label quality matters.

Looking at the results in Tab. 2, we find that the performance of CMKD*
(with ∼ 42k training samples) on Car and Cyclist is a lot better than CMKD
(with ∼ 7.5k training samples), while the performance on Pedestrian is just the
opposite, i.e., more training samples lead to worse results. This is due to the
large gap between the soft label qualities of Car, Cyclist and Pedestrian. The
typical performances of LiDAR-based detectors for Car, Cyclist and Pedestrian
on KITTI leaderboard in Moderate level are around 80, 70 and 40, and the

6 Y. Hong et al.

Table 2. Results for Car, Cyclist and Pedestrian on KITTI test set. CMKD is trained
with the official training set KITTI trainval (∼ 7.5k) and CMKD* is trained with the
unlabeled KITTI Raw (∼ 42k). With unlabeled data from KITTI Raw, the perfor-
mance for Car and Cyclist improves significantly, but the performance for Pedestrian
instead decreases.

Class Methods
3DAP BEV AP

Easy Moderate Hard Easy Moderate Hard

Car
CMKD 25.09 16.99 15.30 33.69 23.10 20.67
CMKD* 28.55 18.69 16.77 38.98 25.82 22.80

Cyclist
CMKD 9.60 5.24 4.50 12.53 7.24 6.21
CMKD* 12.52 6.67 6.34 14.66 8.15 7.23

Pedestrian
CMKD 17.79 11.69 10.09 20.42 13.47 11.64
CMKD* 13.94 8.79 7.42 16.03 10.28 8.85

quality of predictions for Pedestrian is not at the same level as Car and Cyclist
at all. That is, the soft labels provided by the teacher model for Pedestrian
themselves are of very low quality, which can not serve as good guidance for the
student model. The training of our framework on unlabeled data is under the
assumption that the soft labels provided by the teacher model are of sufficient
quality, which is the case for Car and Cyclist but not Pedestrian.

To verify the above discussion, we conduct additional experiments. Specifi-
cally, we choose two categories, Car and Pedestrian, and use hard label and soft
label from KITTI train to supervise them respectively and report the perfor-
mance on KITTI val for comparative experiments. For soft labels, we choose
the early-stopped teacher model epochs whose performance on KITTI val are
close to the typical one on the KITTI test set (3DAP ≈ 80% for Car and
3DAP ≈ 40% for Pedestrian), in order to simulate the soft label quality pro-
vided by the teacher model on unlabeled data.

Table 3. Comparison between hard labels and soft labels used in Lres. Among them,
the soft labels for Car are of sufficient quality, and the soft labels for Pedestrian are of
insufficient quality. We choose the early-stopped teacher model epochs to simulate the
soft label quality that can be provided on unlabeled data.

Settings
3DAP

Easy Moderate Hard

Car, Sufficient Quality Soft Labels

Hard Labels 23.20 15.78 13.77
Soft Labels 23.85 16.22 14.33

Pedestrian, Insufficient Quality Soft Labels

Hard Labels 12.24 8.65 6.82
Soft Labels 4.57 3.20 2.47

CMKD 7

As can be seen from Tab. 3, for Car, sufficient quality soft labels can provide
useful information, and the results using soft labels are better than using hard
labels. But for Pedestrian, insufficient quality soft labels can not provide effective
guidance, so the results are far worse than using hard labels. When we train
CMKD on unlabeled data, the teacher model can extract beneficial information
for Car from the massive unlabeled data and transfer it to the student model,
thereby boosting the performance of the student model. But for Pedestrian, the
soft labels provided by the teacher model themselves are of insufficient quality,
which can not serve as good guidance for the student model, and on the contrary
reduce the performance of the student model. It is for this reason that the results
in Tab. 2 appear. Based on the above experiments and discussions, when the
quality of the soft label is bad, the solution we provide is to change soft labels
to hard labels in the loss term Lres without changing the overall framework.

5 Impact of Different Amounts of Unlabeled Data

In this section, we conduct experiments to explore the impact of different amounts
of unlabeled data on the performance. Here, the baseline is CMKD trained on
KITTI train with ∼ 3.7k samples, and we gradually add unlabeled samples
from Eigen clean split to the training set. We calculate the mean 3DAP and
BEV AP for Car on KITTI val.

24.3

28.5

30.9
31.6 32

17.9

21.3

22.7
23.4 23.7

15

17

19

21

23

25

27

29

31

33

3.7K 5K 8K 12K 18K

m
A

P

Number of Training Samples

BEV AP

3D AP

Fig. 3. Impact of different amounts of unlabeled data to the performance. We use
CMKD trained on KITTI train with ∼ 3.7k samples as the baseline and gradually add
unlabeled samples from Eigen clean split to the training set. We calculate the mean
3DAP and BEV AP for Car on KITTI val.

As can be seen from Fig. 3, the performance of CMKD improves as the num-
ber of unlabeled samples increases. Specifically, when the training samples are
limited (e.g., there are only ∼ 3.7k samples on KITTI train, which are very few

8 Y. Hong et al.

to well train a deep network like CMKD), a small number of unlabeled samples
(∼ 1.3k) can bring significant performance gains. When the number of unlabeled
samples becomes larger (+4.3k, +8.3k, +14.3k respectively), the magnitude of
the performance improvement tends to moderate. And this is consistent with
the trend of performance gains from pre-training with additional unlabeled data
in other tasks, e.g., image classification task on ImageNet [2].

Note that, here, the amount of additional unlabeled data and the information
it can provide is not linear. As mentioned before, KITTI 3D is a sub-set of KITTI
Raw and KITTI Raw is in continuous sequence form, so there are a large number
of similar, repeated samples which can only provide limited new information.
Moreover, KITTI Raw is a massive unlabeled dataset which also contains many
low-quality samples, e.g., with only repetitive and noisy background information,
and these low-quality samples may in turn degrade the performance of the model.
However, one of our starting points of this work is that end-to-end training
can be performed directly on massive unlabeled data to greatly reduce
the cost of annotation and other pre-processing steps. Therefore, we do not filter
these unlabeled samples, but directly use all of them for training, which is exactly
the motivation of the proposed semi-supervised training method.

References

1. Chen, L., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for
semantic image segmentation. CoRR abs/1706.05587 (2017)

2. Deng, J., Dong, W., Socher, R., et al.: ImageNet: A Large-Scale Hierarchical Image
Database. In: CVPR (2009)

3. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR (2012)

4. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
CVPR (2016)

5. Howard, A.G., Sandler, M., Chu, G., et al.: Searching for mobilenetv3. ICCV (2019)
6. Liu, J., Hou, Q., Cheng, M., et al.: Improving convolutional networks with self-

calibrated convolutions. In: CVPR (2020)
7. Liu, Z., Mao, H., Wu, C.Y., et al.: A convnet for the 2020s. arXiv preprint

arXiv:2201.03545 (2022)
8. Reading, C., Harakeh, A., Chae, J., et al.: Categorical depth distribution network

for monocular 3d object detection. CVPR (2021)
9. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural

networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

10. Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection.
Sensors (2018)

	Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection - Supplementary Materials

