
Supplementary Material For ReAct

1 Encoder in Detail

To be self-contained, we provide the detailed structure of the encoder. As Fig.
2 shows, for the input video feature F ∈ RT×D, a local offset position and
attention weight will be predicted with two fully-connected layers, respectively.
For each time step, feature are then sampled according to the K offsets with
linear interpolation. The sampled features are weighted by the attention weights
and summed up to produce the updated frame feature for the corresponding
time step.
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Fig. 1. Illustration of the encoder.

2 Encoder in Detail

To be self-contained, we provide the detailed structure of the encoder. As Fig.
2 shows, for the input video feature F ∈ RT×D, a local offset position and
attention weight will be predicted with two fully-connected layers, respectively.
For each time step, feature are then sampled according to the K offsets with
linear interpolation. The sampled features are weighted by the attention weights
and summed up to produce the updated frame feature for the corresponding
time step.
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Fig. 2. Illustration of the encoder.

3 Decoder in Detail

To help understand our method better, we introduce the decoder in detail. There
are two attention modules in the decoder: the proposed relational attention
module and a cross-attention module.
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Fig. 3. Illustration of the Deformable Cross Attention module.

In the following, we elaborate on the deformable cross-attention module.
As Fig. 3 showed, reference segment, offset position, and attention weights are
predicted by three fully-connect layers, based on which the network samples
sparse features to update the query feature at each decoder layer. There are
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two main differences in the deformable attention module between the encoder
and decoder. First, the inputs and outputs are different. The input of the cross-
attention in the decoder is the queries, while the input of the encoder is video
features. The second difference is the reference segment. In the encoder, temporal
offsets for each frame are sampled only around that frame. Whereas for the cross-
attention module, an additional reference segment length is predicted for each
query feature, and the offsets are normalizes such that the sampled frames are
always in the segment.

4 Architecture and Training Detail

For THUMOS14, following [5], we use the TSN network [3] pre-trained on Ki-
netics [1] to extract features, which are then down-sampled every five frames.
Each video feature is cropped in sequence with a window size 256, and two
adjacent windows will have 192 overlapped features with a stride rate of 0.25.
In the training phase, ground-truth cut by windows over 75% duration will be
kept, and all empty windows without any ground-truth are removed. Finally, all
ground-truth coordinates are re-normalized to the window coordinate system.
we set Lq = 40, LE = 2, LD = 4 for the number of queries, encoder layer
and decoder layer, respectively. Each deformable attention module will sample
4 temporal offsets for computing the attention. The hidden layer dimension of
the feedforward network is set to 1024, and the other hidden feature dimension
in the intermediate of the network is all set to 256. The pair-wise IoU thresh-
old τ and feature similarity threshold γ in ACE module are set to 0.5 and 0.2,
respectively. For ActivityNet, the pre-trained TSN network by Xiong et al. [4]
is adopted to extract features. Then each video feature downsamples every 16
frames, and the resultant feature will be rescaled to 100 snippets using linear
interpolation. We only do video-level detection instead of window-level. We set
the Lq = 60, LE = 3, LD = 4. We sample 4 temporal offsets for the deformable
module. The dimension of hidden features is set to 256, and we set the pair-wise
IoU threshold τ and feature similarity threshold γ to 0.9 and -0.2, respectively.
Following previous works [5, 7, 8, 6], we combined the Untrimmed-Net video-level
classification results [2] with our classification score.

5 Visualization of the Classification Loss

To further demonstrate the effect of ACE-dec loss, we compute the classification
loss for the Activitynet-1.3 test set. As Fig. 4 shows, compared to the Focal Loss,
the ACE-dec loss improves not only the convergence speed but also the accuracy.
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Fig. 4. Visualization of the test classification loss. We record the testing loss with or
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