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1 Appendix

1.1 Memory Requirements of APRs and RPRs

A key motivation for PAEs is to reduce the memory burden associated with
RPRs, which require train images or their encoding to be available at inference
time. Table 1 shows the memory requirements for RPRs, single and multi-scene
APRs with and without PAEs.

Table 1. Order of magnitude of the storage required for different APRs and RPRs
(considering 10 scenes). For RPRs, we assume that a single encoding weighs 5Kb and
each scene contains 2000 images.

Method Storage

RPR ([1]) Gb
Single Scene APR [7] Mb
Multi Scene APR Mb
Multi Scene APR + PAE Mb

1.2 Data Augmentation and Training

When training our camera pose auto-encoder and during test-time optimization,
we follow the same test-time data pre-processing used by [7]. Specifically, im-
ages are first resized, where the smaller edge is resized to 256 pixels, and then
a 224× 224 center crop is taken. When training teacher APRs, we follow a sim-
ilar procedure but additionally apply random jitter to the brightness, contrast,
and saturation and take a random crop (rather than the center one). To train
our decoder, we used 64x64 crops (rescaling is done to maintain the original
ratio between scaling and resizing). In order to support easy reproduction of the
results reported by other researchers, we provide training and evaluation code,
pretrained models, dedicated configuration files, and examples to perform each
experiment.
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1.3 Additional Ablations

Ablation of Fourier Features We carry additional ablation on the number of
periodic encoding functions L (see Section 3.2 in the main text) for our Fourier
Features. Table 2 shows the results for a PAE with a 4-layers MLP trained
without Fourier Features and for a PAE with a 4-layers MLP trained with Fourier
Features with L = 3 and L = 6. The latter configuration, which yields the lowest
position error, is selected for our PAE architecture.

Table 2. Ablations of Fourier Features for the PAE architecture . We compare the
median position and orientation errors when using a 4-layer MLP without Fourier
Features and when applying Fourier Features with L the number of levels set to 3
and 6 (selected architecture). The performance is reported for the KingsCollege scene
(CambridgeLandmarks dataset). The Teacher is a PoseNet APR with a MobileNet
architecture.

Auto Encoder Architecture Position [m] Orientation [deg]

4-Layers MLP (No Fourier Features) 1.26 3.54
4-Layers MLP + Fourier Features, L = 3 1.36 3.27
4-Layers MLP + Fourier Features, L = 6 1.15 3.58

Architecture Choices

– Dimension of ẑx and ẑq: the dimension of the PAE’s latent vectors should
match the dimension of the latent output of the APR teacher. For the APRs
used in our paper, the dimension is the same for both vectors.

– Separate branches for position and orientation estimation: In our work, we
use both single- and multi- scene APRs with separate branches for position
and orientation. Nevertheless, PAEs can be applied to any APR architecture.

– Image size (image decoding): The choice of 64× 64 pixels as the size of the
reconstructed image is set to maintain a short runtime. We note that similar
results (in terms of position error and image quality) were achieved with a
higher image resolution (256 pixels).

1.4 Test-time Position Refinement: Additional Results

Table 3. Median position error in meters when sampling a random guess around the
ground-truth pose and when refining the initial guess with our test-time optimization.
We report the results for the CambridgeLandmarks dataset.

Method K. College Old Hospital Shop Facade St. Mary

Initial Guess 1.47 1.45 1.53 1.8
Refined Guess 0.59 0.57 0.56 0.4
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Table 4. Median position error of single-scene APRs, with and without our test-time
position refinement. Performance is reported for the KingsCollege scene (Cambridge-
Landmarks dataset).

APR Architecture Without Position With Position
Refinement [m] Refinement [m]

PoseNet+MobileNet 1.24 0.91
PoseNet+ResNet50 1.56 1.31
PoseNet+EfficientNet 0.88 0.81

Test-time Position Refinement with a Random Pose Guess We perform
an additional verification of our test-time optimization, where instead of using
an APR to estimate the pose of the query and its latent representation, we take
a random guess around the ground truth pose and encode it (i.e., perform pose
estimation without images). Table 3 reports the results for the CambridgeLand-
marks dataset, showing the accuracy of the position of the initial guess and
the refined estimate, obtained with our test-time optimization. Our method can
significantly reduce the error of the initial guess.

Test-time Position Refinement with Single-scene APRs and PAEs We
apply our test time position refinement to single scene APRs and their respective
student PAEs, trained on the KingsCollege scene from the CambridgeLandmarks
dataset. Table 4 shows the position error achieved by applying each single scene
APR with and without our PAE-based position refinement. Our test-time op-
timization yields a consistent improvement, regardless of the APR architecture
used.

1.5 Test-time Orientation Estimation with Affine Combination

Our test-time refinement focuses on position estimation through affine combi-
nation of train positions, fetched based on PAE encoding. We further evaluate
this procedure to refine the orientation estimation. Table 5 shows the results for
MS-Transformer with and without applying our affine combination to orienta-
tion estimation for the CambridgeLandmarks dataset. The affine combination
leads to degradation, suggesting that additional research is needed to extend
the PAE-based test time refinement to improve orientation estimation. Natural
extensions are estimating the weights for position and orientation separately as
well as combining the quaternions through quaternion averaging algorithms such
as [9] (rather than directly applying a weighted average as done in our proposed
procedure).

1.6 Comparison of Camera Localization Methods

Our work focuses on encoding camera poses and demonstrating their usages
for absolute pose regression. However, absolute pose regression is one family of
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Table 5. Median orientation error in degrees for the CambridgeLandmarks dataset,
obtained with MS-Transformer[13] with and without the proposed test-time affine com-
bination.

Method K. College Old Hospital Shop Facade St. Mary

MS-Transformer 1.47 2.39 3.07 3.99
MS-Transformer with 2.83 4.04 3.44 7.96
Affine Combination

methods out of several clusters of techniques for camera localization, namely:
structure-based methods, image retrieval, and relative pose regression (see our
Related Work section). In order to support a more complete comparison, Table 6
shows the results for representative methods for the CambridgeLandmarks and
7Scenes datasets. Structure-based method achieve the best localization accuracy.
However, they require the intrinsics of the query camera, which might not be
accurate or available.

Table 6. Comparison of localization methods when applied to the Cambridge Land-
marks and 7Scenes datasets. We show results for representative methods from each
localization family: structure-based (STR), image retrieval (IR), relative pose regres-
sion (RPR) and image based absolute pose regression (APR). We report the average
of median position/orientation errors across scenes in meters/degrees for each method.

Method CambridgeLand. 7Scenes

S
T
R DSAC [2] 0.15/0.4 0.03/1.4

DSAC* [3] 0.15/0.4 –/–

IR

VLAD [14] 2.56/7.1 0.26/12.5
VLAD+Inter [11] 1.67/4.9 0.24/11.7

R
P
R

EssNet [19] 1.08/3.4 0.22/8.0
VLocNet [15] 0.78/2.8 0.05/3.8
GL-Net [18] 1.22/2.4 0.19/6.3
NC-EssNet [19] 0.85/2.8 0.21/7.5
RelocGNN[3] 0.91/2.3 0.91/2.3

A
P
R

PoseNet [7] 2.09/6.84 0.44/10.4
BayesianPN [8] 1.92/6.28 0.47/9.81
LSTM-PN [16] 1.30/5.52 0.31/9.86
SVS-Pose [10] 1.33/5.17 −−
GPoseNet [5] 2.08/4.59 0.31/9.95
PoseNetLearn [6] 1.43/2.85 0.24/7.87
GeoPoseNet [6] 1.63/2.86 0.23/8.12
MapNet [4] 1.63/3.64 0.21/7.78
IRPNet [12] 1.42/3.45 0.23/8.49
AttLoc[17] −− 0.20/7.56
MS-TransFormer[13] 1.28/2.73 0.18/7.28
MS-Transformer + Position Refinement 0.96/2.73 0.15/7.28
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