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Abstract. We propose a transformer-based neural network architecture
for multi-object 3D reconstruction from RGB videos. It relies on two al-
ternative ways to represent its knowledge: as a global 3D grid of features
and an array of view-specific 2D grids. We progressively exchange infor-
mation between the two with a dedicated bidirectional attention mech-
anism. We exploit knowledge about the image formation process to sig-
nificantly sparsify the attention weight matrix, making our architecture
feasible on current hardware, both in terms of memory and computa-
tion. We attach a DETR-style head [9] on top of the 3D feature grid
in order to detect the objects in the scene and to predict their 3D pose
and 3D shape. Compared to previous methods, our architecture is single
stage, end-to-end trainable, and it can reason holistically about a scene
from multiple video frames without needing a brittle tracking step. We
evaluate our method on the challenging Scan2CAD dataset [3], where
we outperform (1) state-of-the-art methods [39,34,35,15] for 3D object
pose estimation from RGB videos; and (2) a strong alternative method
combining Multi-View Stereo [17] with RGB-D CAD alignment [4].

1 Introduction

Detecting and reconstructing objects in 3D is a challenging task with multiple
applications in computer vision, robotics, and AR/VR that require semantic 3D
understanding of the world. In this paper we propose RayTran, a transformer-
based [59] neural network architecture for reconstructing multiple objects in 3D
given an RGB video as input. Our key new element is a backbone which infers
a global representation of the 3D volume of the scene. We attach a DETR-style
head [9] on top of it, which detects objects in the 3D representation and predicts
their 3D pose and shape (Figure 1).

The backbone inputs multiple video frames showing different views of the
same static scene. Its task is to jointly analyze all views and to consolidate the
extracted information into a global 3D representation. Internally, the backbone
maintains two alternative scene representations. The first is three-dimensional
and describes the volume of the scene. The second is two-dimensional and de-
scribes the volume from the perspective of the individual views. We connect
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Fig. 1: Overview of our method: The RayTran backbone processes information in
two parallel network streams. The first one (2D) works on features extracted on the
multiple input frames. The second one (3D) starts from an empty volumetric feature
representation of the scene. The 2D stream gradually consolidates features on the 3D
volume and visa-versa with repeated blocks of ray-traced transformers. The backbone
outputs a 3D feature grid which offers a global representation of the 3D volume of the
scene. We attach a DETR-style head [9] to this representation, to detect all objects
in 3D and to predict their 3D pose and 3D shape. We further help training with two
auxiliary tasks: predicting 3D coarse binary occupancy for all objects together, and
predicting amodal 2D foreground-background masks.

these two representations with a bidirectional attention mechanism to exchange
information between them, allowing the 3D representation to progressively ac-
cumulate view-specific features, while at the same time the 2D representation
accumulates global 3D features.

Processing videos with transformers is notoriously resource-consuming [7,2].
Our case is no exception: if we relied on attention between all elements in the 2D
and 3D representations, the attention matrix would have infeasible memory re-
quirements (and it would also be computationally very expensive). To overcome
this, we propose a sparse ray-traced attention mechanism. Given the camera pa-
rameters for each view, we exploit the image formation process to identify pairs
of 2D and 3D elements that are unlikely to interact. We omit these pairs and
store the attention matrix in a sparse format. This greatly reduces its computa-
tional and memory complexity, by a factor of O(|V | 23 ), where |V | is the number
of voxels in the 3D representation.

We attach a DETR-style head [9] on top of the 3D representation produced by
the backbone. This head detects objects and predicts their class, 3D shape, and
3D pose (translation, rotation, scale). We represent object shapes with a voxel
grid and then extract meshes using marching cubes [33]. We also predict coarse
binary volumetric occupancy for all objects together, using a 3D convolutional
layer on top of the global 3D representation. This provides an auxiliary task that
teaches the network about the scene’s geometry, and is essential for training.

As a second auxiliary task, we add an additional network head that predicts
the 2D amodal foreground-background binary masks of all objects in the scene.
Besides enabling this task, this head also helps training the backbone as it closes
the loop between images and the 3D representation.

Several recent works [39,52,34] tackle 3D scene reconstruction from videos in
the same setting. They rely on a 3-step pipeline: (1) object detection in individual
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2D frames, along with estimating properties such as 3D rotation, parts of 3D
scale, and 3D shape (either as a parametric surface [34] or by retrieving a CAD
model from a database [39]); (2) tracking-by-detection [1,8,6], to associate 2D
detections across frames; (3) multi-view optimization to integrate the per-frame
predictions. This completes all 3D pose parameters, resolving the scale-depth
ambiguities, and places all objects in a common, global 3D coordinate frame.

Our method was inspired by these works and addresses several of their short-
comings. The pipelines are composed of heterogeneous steps, which are trained
separately and require manual tuning to work well together. The pipelines are
complicated and over-engineered due to the intricate nature of the full-scene
object reconstruction task. The tracking step is especially brittle. Objects often
go out of view and re-appear later, and occlude each other over time. This poses
a major challenge and leads to objects broken into multiple tracks, as well as
tracks mixing multiple objects. These tracking errors harm the quality of the
final 3D reconstructions.

In contrast, our method is end-to-end trainable. It is built from well un-
derstood neural network modules and it has a simple, modular architecture in
comparison. Importantly, we avoid tracking altogether. Furthermore, our method
does not rely on any notion of time sequence, so it is also applicable to sparse
multi-view inputs (in addition to video).

We evaluate RayTran on the challenging Scan2CAD [3] dataset, featuring
videos of complex indoor scenes with multiple objects. Through extensive com-
parisons we show that RayTran outperforms several works: (1) two baselines that
process frames individually, defined in [39] as extensions of Mask2CAD [31].
This illustrates the value of jointly processing multiple frames in RayTran;
(2) four recent multi-frame methods Vid2CAD [39], ODAM [34], MOLTR [35],
ImVoxNet [15]. Besides performing better, RayTran also offers a much simpler
design than [39,34,35], with an end-to-end trainable, unified architecture which
does not require a tracking module; (3) a strong alternative method that com-
bines the state-of-the-art Multi-View Stereo [17] and RGB-D CAD alignment [4]
methods.

2 Related Work

3D from multiple views. Classic SfM/SLAM works cast 3D reconstruction
as estimation of 3D points from multiple views based on keypoint correspon-
dences [49,43,61,54,18]. However, the output point cloud is not organized into
objects instances with their classes, 3D shapes, or poses. A line of works detect
and localize objects in 3D using multi-view projection constraints, by approx-
imating the object shapes with 3D boxes [64] and ellipsoids [45]. ODAM [34]
goes a step further to creates a scene representation out of superquadrics, by
using a graph neural network as core architecture for object association in time.
FroDO [52] and MO-LTR [35] rely on both 2D image cues and the sparse 3D point
clouds from SfM/SLAM to reconstruct objects in the scene. Qian et al. [51] pro-
duce volumetric reconstructions of multiple objects in a synthetically generated
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scene. Vid2CAD [39] integrates the single-view predictions of Mask2CAD [31]
across time, to place objects from a CAD database into the 3D scene.

A common caveat of multi-view methods for 3D object reconstruction is that
their architectures are overly complex, they cannot be trained end-to-end due to
their heterogeneity, and they often rely on a brittle tracking-by-detection step.
Instead, our proposed method provides a light-weight end-to-end architecture
for the task, while we completely avoid tracking.

Similar to RayTran, the concurrent ImVoxelNet [15] keeps its 3D knowledge
in a global 3D representation and does not require tracking. It uses a hand-
crafted unidirectional mechanism to project and consolidate image features onto
it. In contrast, our ray-traced transformers learn the optimal way to consoli-
date features. They are also bidirectional, which enables 2D supervision through
re-projection as well as additional tasks, like novel-view synthesis. Moreover,
RayTran reconstructs the 3D shapes of the detected objects, going beyond de-
tecting 3D boxes.

Transformer architectures for computer vision. Several recent works use
attention-based architectures (transformers) [59] for computer vision tasks. ViT [16]
replaces the traditional convolutional backbones with attention among patches
for image classification. The same idea has been incorporated into network de-
signs for semantic segmentation [57,65,12], object detection [9], and panoptic
segmentation [12]. Transformers have been introduced recently also for video
processing. TrackFormer [40] uses a transformer architecture for multi-object
tracking. ViViT [2] and TimeSFormer [7] use ViT-like patches from multiple
frames for video classification.

The main bottleneck of these approaches are the prohibitive memory require-
ments. TrackFormer [40] can only process 2 images at a time, which prevents
end-to-end training on the whole video. Similarly, the all-to-all patch attention,
which is the cornerstone of [7,2], comes with often infeasible memory require-
ments. ViViT [2] needs the combined memory of 32 TPU accelerators to process
a single batch of 128 frames. Our work overcomes these limitations by using
sparse attention between 2D and 3D features. The sparsity is achieved by using
image formation constraints directly from the poses of the cameras, which signif-
icantly reduces the memory requirements. For reference, RayTran processes up
to 96 frames of a video and reconstructs all instances on a single 16 GB GPU.

3D using a dedicated depth sensor. Our work draws inspiration from several
3D object reconstruction methods that directly work on point clouds obtained
by fusing RGB-D video frames. Early works use known pre-scanned objects [53],
hand-crafted features [44,21,36,56], and human intervention [56]. Recent works
use deep networks to directly align shapes on the dense point clouds [3,4,5,28,55].
Fei et al. [20] align a known set of shapes on a video in 4 DoF, by using a camera
with an inertial sensor.

Using an additional sensor reduces the search-space required to accurately
re-construct an object in 3D. Both the depth and the inertial sensors eliminate
the depth-scale ambiguity, and compared to re-constructing from pure RGB,
RGB-D sensors provide cleaner, much more realistic results. Our work does not
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require the intermediate step of point-based reconstruction, does not use the
extra depth sensor, and can directly reconstruct objects in a posed RGB video.
3D detection and reconstruction from a single image. Pioneering works
in this area process a single image to either infer the pose of an object as an
oriented 3D bounding box [42,38], or to also predict the 3D shape of the ob-
ject [60,41,13,22,62,63,47,11]. Works that are able to predict an output for mul-
tiple object instances, typically first detect them in the 2D image, and then
reconstruct their 3D pose and/or shape [27,23,31,29,58,30,46,50,32,19,26,24].

3D predictions from single images tend to be inaccurate due to scale-depth
ambiguity, and often methods of this category compensate for it in a variety
of ways, e.g., based on estimating an approximate pixel-wise depth map from
the input image [27], by requiring manually provided objects’ depth and/or
scale [23,31,32] at test time, or by estimating the position of a planar floor in
the scene and assuming that all objects rest on it [29]. Some works [58,46,50]
attempt to predict object depth and scale directly based on image appearance.
Our proposed approach processes multiple frames simultaneously, and implicitly
compensates for the scale-depth ambiguity by using many different view-points
of the objects appearing in the scene.

3 Proposed Approach

Our method takes multiple views (video frames) of a scene and their camera
parameters as input. Each view captures a different part of the same 3D scene.
It outputs the 3D pose (rotation, translation, scale), the class, and the 3D shape
of all objects in the scene.

We achieve this with a single, end-to-end trainable, neural network model.
We propose a transformer-based backbone that processes the input views and
infers a global 3D volume representation for the entire scene. We use this repre-
sentation to predict the object shapes, poses, and classes, by attaching a DETR-
style [9] head to it. In addition, we perform two additional auxiliary tasks: 3D
occupancy, where we predict coarse binary volumetric occupancy for all objects
together, and 2D foreground-background amodal segmentation. The overview of
our architecture is illustrated in Fig. 1.

3.1 The RayTran Backbone

We propose a neural network architecture that operates on two alternative rep-
resentations in parallel. The first one is three-dimensional and describes the 3D
space that the scene occupies. We use a voxel grid V with global features that
coincides with this space. The second one is two-dimensional and describes the
scene from the perspective of the individual views. For each view i = 1..N , we
use a pixel grid Pi of image features that coincides with the view’s image.

The two representations are connected implicitly through the image forma-
tion process. We model this as a sequence of 2D ⇔ 3D neural network trans-
former blocks (Figure 2, left). The j-th block takes all views P j

1...N and the vol-
ume V j as input, mixes their features, and outputs a pair of new representations
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Fig. 2: 2D ⇔ 3D ray-traced transformer block (left). Each block uses two par-
allel residual network streams that exchange information by attention. They consist
of two layers of ray-traced sparse attention (2D→3D and 3D→2D) followed by a feed-
forward network (FFN) composed of 3D and 2D convolutions, respectively. The voxel
features (3D) inform the image features (2D) at each stage of the backbone. The 3D
reconstruction head uses the voxel features (output of left stream), whereas the 2D
foreground-background segmentation head uses the pixel grid (output of right stream).
Intertwining 3D voxel- with 2D image features (right): Multiple voxels can
project on the same pixel, and multiple pixels from multiple cameras can look at the
same voxel. The proposed attention layer models this interaction in an intuitive way.

(P j+1
1...N and V j+1). This allows the global 3D representations to be progressively

populated by local features from the different views, while at same time the 2D
representations progressively accumulate global features in different depths of
the network.

The output of the RayTran backbone is a 3D feature representation of the
scene, derived from the input views. In order to compute the initial 2D represen-
tation P 0

i , we embed ResNet-18 [25] in our backbone (pre-trained on ImageNet).
We run ResNet-18 over the input views i and we take the output of its penulti-
mate block for each view. To initialize the 3D volume representation V 0, we cast
a ray (un-project) from all the pixels P 0

i onto the 3D volume. We then average
the image features that fall into each voxel of V 0.
Block operation. The 2D⇔3D blocks of RayTran consist of two parallel net-
work streams, as shown in Figure 2 (left). The first one (2D ⇒ 3D), mixes
features from P j

i into V j and outputs V j+1. The second one (3D ⇒ 2D) from

V j into P j
i , resulting in P j+1

i . We propose to build both networks using the
multi-headed attention mechanism [59].

The attention mechanism can translate an input vector (1D array of features)
from a source domain into a differently-sized vector in a target domain. To do
this, the mechanism computes a key vector that describes each position in the
source domain and a query vector that describes each position in the target
domain. It then computes a matrix describing the relation between source and
target positions, by storing the dot product between the features at position
i in the key and position j in the query at (i, j) in the matrix. Finally, the
mechanism computes a value vector from the input vector and multiplies this
with the attention matrix in order to obtain the output. The key and the value
depend on the input vector (from the source domain), while the query depends
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on a vector from the target domain. The goal of the attention mechanism is to
learn the dependencies between the two domains.

The attention mechanism is intrinsically well suited to model the connection
between pixels and voxels. Multiple pixels from multiple cameras can look at
the same voxel, as shown in Fig. 2 (right). We need a mechanism to consolidate
their features in the voxel. Similarly, multiple voxels can project onto the same
pixel and we need to consolidate their features. The matrix-value multiplication
in the attention mechanism naturally achieves the desired effect.

For 2D ⇒ 3D attention, we derive the key and the value from all pixels from
all views of P j

i and the query from all voxels of V j . For 3D ⇒ 2D attention,

conversely, from V j and P j
i . We introduce skip connections in both networks,

by adding the inputs of the attention mechanism to its outputs. We then post-
process with a feed-forward network, built with 3D and 2D convolution layers
respectively (Fig. 2).
Ray-traced attention layers. In a realistic setting, the attention layer has
infeasible memory requirements. Our backbone operates on multiple frames si-
multaneously, 20 during training and 96 at inference time, each using a 2D fea-
ture grid of 40× 30 for the 2D features Pi. We use a voxel grid with resolution
48× 48× 16 to model a 9m× 9m× 3.5m volume, corresponding to voxel dimen-
sions of approximately 19cm × 19cm × 22cm. We use 256 features in both the
2d and 3d representations and 8 heads in the attention layers. Given the above
numbers, the attention matrices in each 2D ⇔ 3D block alone would require
≈ 52GB of memory with 20 frames, which is prohibitive.

To overcome this, we embed knowledge about the image formation process
into the architecture (Fig. 3). A pixel and a voxel can interact with each other
directly only if there is a camera ray that passes through both of them. If no such
ray exists, the two are unlikely to interact, and we set the corresponding entry in
the attention matrix to zero. This is mathematically equivalent to the masking
mechanism employed in autoregressive transformers to enforce causality [59], but
crucially allows us to store the matrix in sparse form and significantly reduce
memory consumption. A pixel can only interact with O( 3

√
|V |) voxels, where

|V | is the number of voxels in V , since any ray can only pass through at most

this many voxels. We thus need O(|V | 23 ) times less memory to store the matrix.
In sparse coordinate format, which encodes each matrix entry with 3 numbers
(row, column, value), the matrix from our example above would consume 270
times less memory (3×64.4MB instead of 52GB). We call multi-headed attention
based on such sparse matrices ray-traced sparse attention.

We use the camera parameters to determine which pixel-voxel pairs interact
with each other. In turn, the camera parameters can be computed with off-the-
shelf pipelines such as COLMAP [54]. To make full use of the limited volume
that our backbone can focus on, we center the camera positions within it.

3.2 Task-specific heads on top of the backbone

3D pose estimation and shape reconstruction. For our main task, we
predict the 3D pose, and reconstruct the shape of all objects seen in the video.
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Fig. 3: Ray-traced sparse attention. A pixel and a voxel are likely to interact only if
a ray passes through both of them. We exploit this to significantly reduce the memory
requirements of our 2D ⇔ 3D blocks, by sparsifying the attention matrices. If no ray
passes though a pixel/voxel pair, the two are unlikely to interact and we omit the
corresponding value in the matrix.

We use a DETR-style [9] architecture, with multi-headed attention between 64
object query slots and the voxels in the backbone output. In each slot, we predict
the object’s class, its shape in canonical pose, 3D center, 3D anisotropic scale,
and 3D rotation. We use a special padding class to indicate that a query slot
does not contain a valid object. We encode the shape as a 63×63×63 voxel grid,
which we predict with a sequence of transposed 3D convolution layers from the
query’s embedding. We use Marching Cubes [33] to convert the voxel grid to
a mesh. We only predict rotation around the ‘up’-axis of each object (as one
angle), as most objects in our dataset are only rotated along this axis.

We use cross entropy for predicting the class, binary cross entropy for the
shape’s voxels, soft L1 loss for the object center, L1 loss over the logarithm of the
scales, and a soft L1 loss for the rotation angles. Finally, we match predictions
to ground-truth objects in DETR using a linear combination of all losses except
the voxel one, which we exclude for performance reasons. As in [9], we supervise
at all intermediate layers.

3D occupancy prediction. As an auxiliary task, we also predict the binary
3D occupancy of all objects for the whole scene on a coarse voxel grid. We
use one 3D convolution layer on top of the backbone output, and we supervise
with binary-cross-entropy. We run occupancy prediction as an auxiliary task, to
directly teach the network about the combined object geometry. This is crucial
for the 3D object reconstruction task, as the DETR-style head fails to pick up
any training signal if the network is trained without it.

2D foreground-background (FG/BG) segmentation. As a second aux-
iliary task, we predict a 2D amodal segmentation mask in each view, for all
objects together. A pixel belongs to the mask if it lies on any object in the view,
regardless of occlusion. We use transposed convolutions, combined with non-
linearities and normalization layers, to up-sample the pixel stream output Pn

i of
the last 2D ⇔ 3D block to the original input resolution (16-fold). We supervise
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Single-frame
baselines

Mask2CAD [31] +avg 2.5 3.5 0.0 1.9 1.5 6.8 3.7 2.7 1.4 3.0 1.2
Mask2CAD [31] +pred 11.6 16.0 8.3 3.8 5.4 30.9 17.3 5.3 7.1 25.9 0.5

Multi-Frame
Methods

MVS [17] + RGB-D fitter [4] 18.8 21.7 15.8 8.5 17.3 34.3 25.7 15.0 10.9 35.8 6.1
ODAM [34] 25.6 29.2 24.2 12.3 13.1. 42.8 36.6 28.3 31.1 42.2 0.0
Vid2CAD [39] 30.7 38.6 28.3 12.3 23.8 64.6 37.7 26.5 28.9 47.8 6.6
RayTran 36.2 43.0 19.2 34.4 36.2 59.3 30.4 44.2 42.5 31.5 27.8

Table 1: Quantitative results on the Scan2CAD [3] dataset using the original
Scan2CAD metrics. Results for Mask2CAD variants, MVS+RGB-D fitter, and
Vid2CAD are as reported in [39]. ODAM originally reports in another metric (Tab. 2).
We re-evaluate in the Scan2CAD metrics based on model outputs provided to us by the
authors. Note that ODAM was not trained to predict the ‘other‘ class. When excluding
it from the metrics, ODAM achieves class avg. of 28.8% and global avg. of 33.5%.

using the binary cross entropy loss. We create the amodal masks by rasterizing
the combined geometry of all ground-truth 3D objects into each view. Predict-
ing amodal masks enhances the backbone’s 3D understanding of the world. In
general, the amodal mask is ill-defined for occluded regions in a single image.
It becomes well defined with multiple views however, if some of them observe
the object behind the occluder. Hence, this FG/BG task pushes our network to
reason about geometric relations across multiple views.
Novel View Synthesis. While we focus on multi-object 3D reconstruction, our
backbone and the scene-level representation it outputs can be used for other 3D
tasks as well. In the supplemental material, we provide qualitative results for
Novel View Synthesis, which builds upon RayTran’s backbone.

4 Experiments

Datasets and evaluation metrics.We evaluate our method on Scan2CAD [3],
following their protocol and evaluation metrics. Concretely, we use videos from
ScanNet [14], 3D CAD models from ShapeNetCore [10], and annotations that
connect the two from Scan2CAD [3]. ScanNet provides videos of rich indoor
scenes with multiple objects in complex spatial arrangements. ShapeNetCore
provides CAD models from 55 object classes, in a canonical orientation within
a class. Scan2CAD provides manual 9-DoF alignments of ShapeNetCore models
onto ScanNet scenes for 9 super-classes.

We use these datasets both for training and evaluation. During training,
we consider all ScanNet videos in the official train split whose scenes have
Scan2CAD annotations (1194 videos). We evaluate on the 306 videos of the
validation set, containing a total of 3184 aligned 3D objects. We quantify per-
formance using the original Scan2CAD metrics [3] and the metrics introduced in
ODAM [34]. In the Scan2CAD metrics, a ground-truth 3D object is considered
accurately detected if one of the objects output by the model matches its class
and pose alignment (passing three error thresholds at the same time: 20% scale,
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Prec./Rec./F1 MOLTR [35] ODAM [34] Vid2CAD [39] ImVoxelNet [15] RayTran

@IoU> 0.25 54.2/55.8/55.0 64.7/58.6/61.5 56.9/55.7/56.3 52.9/53.2/53.0 65.4/61.8/63.6
@IoU> 0.5 15.2/17.1/16.0 31.2/28.3/29.7 34.2/33.5/33.9 17.0/17.1/17.0 41.9/39.6/40.7

Table 2: Quantitative results on Scan2CAD using the ODAM [34] metrics. To evaluate
RayTran, we derive an oriented 3D box by using the 3D transformations predicted by
the model. RayTran outperforms all other works, especially at the stricter IoU thresh-
old (@IoU> 0.5), showing it produces particularly accurate object poses. Note that for
Vid2CAD we report the updated results from https://github.com/likojack/ODAM

(which match exactly the Vid2CAD paper [39]). Also note that ImVoxelNet outputs
axis-aligned boxes, which hinders its performance at high IoU thresholds. Finally, re-
sults for MOLTR and ODAM are as reported in [34].

20◦ rotation, 20cm translation). We report accuracy averaged over classes (‘class
avg.’) as well as over all object instances (‘global avg’). In the metrics of [34], an
object is considered accurately detected if the Intersection-over-Union (IoU) of
its oriented 3D bounding box to a ground-truth box of the same class is above
a predefined threshold. We report precision, recall, and F1 score. Finally, the
dataset also provides dense 3D meshes for the scene produced using a dedicated
depth sensor. We ignore this data, both at training and test time (in contrast to
some previous works which rely on it [3,4,5,28,55]).

Training details. We implement our model in PyTorch [48]. We train on 20
frames per video, using 16-bit float arithmetic. This allows us to fit one video on
a GPU with 16GB of memory. We use 8 GPUs in total, resulting in a batch size
of 8. We train RayTran in three stages. We first train just the backbone for 224k
steps (1500 epochs) on the task of predicting 3D occupancy (Sec. 3.2). We then
enable all other tasks except the shape predictor and we train for another 239k
steps (1604 epochs). Finally, we train just the shape predictor for another 5k
steps (17 epochs), after freezing the rest of the network parameters. We use the
AdamW [37] optimizer, with a learning rate of 10−4 and weight decay 5 · 10−2.

Compared methods.We compare RayTran against Vid2CAD [39], ODAM [34],
MOLTR [35], and ImVoxelNet [15], four recent methods for 3D object pose es-
timation and detection from RGB videos.

We further compare to two baselines that process frames individually, de-
fined by [39]. These extend Mask2CAD [31], which in its original form does not
predict the 3D depth nor the scale of the object. The first baseline, ‘Mask2CAD
+avg’, estimates an object’s depth and scale by taking the average over its class
instances in the training set. The second baseline, ‘Mask2CAD +pred’, predicts
the scale of the actual object in the image (and then derives its depth from
it). Both baselines aggregate 3D object predictions across all video frames and
remove duplicates that occupy the same volume in 3D.

Several previous methods report strong results on Scan2CAD by using a
dedicated RGB-D depth sensor to acquire a dense 3D point-cloud of the scene.
Those methods have an intrinsic advantage and operate by directly fitting CAD
models on the scene’s 3D point cloud [3,4,5,28]. Instead, our method only uses the
RGB frames. Hence, we compare to a strong alternative method, defined in [39],
that replaces the input of the best RGB-D fitting method [4] with 3D point-

https://github.com/likojack/ODAM
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Fig. 4: Transformation type ablation: Class-avg accuracy as a function of the eval-
uation threshold (the vertical dotted line shows the default value, used in Tab. 1). We
examine each transformation type separately. RayTran achieves better accuracy than
Vid2CAD, ODAM, and ‘Mask2CAD +pred’ on all transformation types.

clouds generated by the state-of-the-art multi-view stereo method DVMVS [17].
We train DVMVS on ScanNet, and re-train [4] on its output.

Main results. Tab. 1 shows the results in the Scan2CAD metrics. RayTran
outperforms both single-frame baselines as well as the ‘MVS + RGBD fitter’
combination by a wide margin (+33.7%, +24.6%, +17.4% class avg. accuracy
respectively). RayTran also outperforms both competitors that align CAD model
to RGB videos but rely on tracking: Vid2CAD [39] (+5.5%) and ODAM [34]
(+10.6%). Importantly, RayTran is also much simper in design, as [39,34] consist
of multiple disjoint steps (object detection, tracking, multi-view optimization).
Fig. 5 and Fig. 6 illustrate qualitative results for our method.

Looking at individual categories, we obtain the best result on 5 out of 9,
and in particular on the ”other” category, which is hard for methods based on
retrieving CAD models [39,3,4]. Our method instead predicts 3D shapes as voxel
grids which helps to generalize better and to adapt to the large variety of object
shapes in this catch-all category. On ‘trashbin’ we do moderately worse, possibly
because of the relatively coarse voxel resolution of the backbone representation.

For completeness, we also compare to methods [3,4] in their original form, i.e.
fitting CAD models to high-quality dense RGB-D scans. Surprisingly, RayTran
(36.2%/43.0%) improves over [3] (35.6%/31.7%), despite using only RGB video
as input. While the state-of-the-art [4] performs even better (44.6%/50.7%), this
family of methods are limited to videos acquired by RGB-D sensors.

Fig. 4 reports accuracy for each transformation type separately (translation,
rotation, and scales). Our method predicts all transformation types better than
Vid2CAD, ODAM, and the best single-frame baseline Mask2CAD+pred. As
objects are considered accurately detected only when passing all 3 thresholds
simultaneously, improving translation is the biggest avenue for improving our
overall quantitative results (Tab. 1).

Tab. 2 reports results in the ODAM metrics, which allow us to compare
to MOLTR [35] and ImVoxelNet [15]. We choose an object score threshold to
maximize the F1 score on the val set for methods that predict object scores
(RayTran, Vid2CAD, ImVoxelNet), following the practice of [34]. RayTran out-
performs all four methods [34,35,15,39] at both IoU thresholds. ImVoxelNet [15]
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Method. extra input auxiliary tasks class avg. global avg.

RayTran - 3D occupancy + 2D FG/BG seg. 36.2 43.0
RayTran w/o FG/BG. - 3D occupancy 33.8 40.1

RayTran + GT masks 2D GT masks 3D occupancy + 2D FG/BG seg. 47.6 52.5

Table 3: Effects of object segmentation in RayTran. Without FG/BG segmentation
as an auxiliary task, the network performs worse (first two rows). If we grant the
model the ground-truth segmentation masks as input, results substantially improve,
highlighting how future progress on automatic 2D segmentation will benefit our work
too (last row). In all cases, the model is trained with the main 3D object pose/shape
estimation loss (Sec. 3.2), in addition to the auxiliary losses listed here.

reports results on ScanNet, not on Scan2CAD. To compare properly we use their
publicly available source code and re-train on Scan2CAD. The original code only
outputs axis-aligned object boxes on ScanNet (and hence on Scan2CAD, which
is derived from it). This prevents comparison on the Scan2CAD metrics, as we
cannot compute precise rotation and scale components. Finally, predicting box
rotation could potentially improve the results in the ODAM metrics.

Ablation: 2D FG/BG segmentation as auxiliary task. Our model predicts
amodal masks, which reinforces the backbone’s 3D understanding. Pixels where
the object is occluded can only be predicted correctly in 2D as part of the amodal
mask by relying on signal from other frames, via the global 3D representation.
To support this claim, we trained a version of our model where we disabled
the 2D FG/BG segmentation auxiliary task of Sec. 3.2. This reduces class-avg
accuracy by -2.4% (36.2% vs. 33.8 first two rows of Tab. 3).

Ablation: Perfect segmentation. Our model performs both 2D and 3D anal-
ysis. The main challenge in the 2D analysis is pixelwise segmentation in the
input frames. We explore here what would happen if our model were granted
perfect object segmentation as input. We train a model which inputs a binary
mask as a 4th channel, in addition to RGB. A pixel in the mask is on if it belongs
to any object of the 9 classes annotated in Scan2CAD, and 0 otherwise. This
augmented model improves class-avg accuracy by +11.4% (reaching 47.6%), and
global-avg by +9.5% (reaching 52.5%, Tab. 3 last row). Hence, as research on
2D segmentation improves, so will our model’s 3D scene understanding ability.

Ablation: Number of objects in the scene. By design, our network can-
not predict more object instances than the query slots in the DETR head (64).
Moreover, typically only about 30% of all query slots bind to an actual object [9]
in scenes containing many objects. This limits recall on such scenes, which some-
times do occur in Scan2CAD. Carion et al [9] believe that query slots tend to
bind to fixed spatial regions, regardless of the content of a test image, causing
this limitation. We operate in 3D, which likely exacerbates it because we need
many more queries to cover the 3D space.

To understand the effect of this phenomenon on our model’s performance,
we evaluate here on 3 subsets of Scan2CAD’s val split, containing scenes with
at most 10, 20, and 30 objects respectively. This reduces the number of objects
undetected by the fixed 64 query slots in our DETR head.
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Fig. 5: Qualitative Results (top-view, with frame overlays): We show the 3D
pose estimation (as oriented boxes) and shape reconstruction outputs of RayTran
against the ground truth, from the top and from the viewpoint of the images. The
objects are colored by class. We are able to reconstruct complex scenes in a single pass.

The class-avg accuracy of RayTran indeed improves in scenes containing
fewer objects (from 36.2% in all scenes, up to 37.4% in scenes with < 10 objects).
The accuracy of the best previous method Vid2CAD instead remains constant.
In scenes with at most 10 objects, we outperform Vid2CAD by 6.7% (37.4% vs.
30.7%), which is a larger difference than on all scenes (5.5%: 36.2% vs. 30.7%).
Hence, DETR’s limitation is affecting our model as well and improving upon it
will improve our overall performance.

Ablation: Number of input frames. Our model can process a variable num-
ber of input frames per video. We use 20 frames at training time to limit memory
requirements. In all experiments so far, we used 96 frames at inference time, as
using more frames improves coverage of the 3D volume of the scene and hence
accuracy of the output. To support this claim, we now reduce the number of
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Fig. 6: Additional qualitative Results (top-view): We show the 3D pose estima-
tion and shape reconstruction outputs for 3 additional scenes. For each detected object
we visualize its 3D oriented bounding box, as well as its reconstructed mesh.

frames at inference time. With 48 frames class-avg. falls by -0.4%. Worse yet,
if inference were constrained to 20 frames as during training, then performance
would drop by -3.3%. This highlights the value of our model’s ability to input a
variable number of frames.

5 Conclusions

We presented RayTran, a novel backbone architecture for 3D scene reconstruc-
tion from RGB video frames, that uses transformers for unprojecting 2D features
and consolidating them into a global 3D representation. We introduced the ray-
traced sparse transformer block, which enables feature sharing between the 2D
and 3D network streams, in a computationally feasible way on current hardware.
We use this architecture to perform 3D object reconstruction for the full scene
by combining it with a DETR-style network head. Our architecture can recon-
struct the whole scene in a single pass, is end-to-end trainable, and does not
rely on tracking. We perform experiments on the Scan2CAD benchmark, where
RayTran outperforms (1) recent state-of-the-art methods [39,34,35,15] for 3D
object pose estimation from RGB videos; and (2) a strong alternative method
combining Multi-view Stereo [17] with RGB-D CAD alignment [4].
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video vision transformer. In: CVPR (2021) 2, 4

3. Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nießner, M.:
Scan2CAD: Learning cad model alignment in RGB-D scans. In: CVPR (2019)
1, 3, 4, 9, 10, 11

4. Avetisyan, A., Dai, A., Nießner, M.: End-to-end cad model retrieval and 9dof
alignment in 3d scans. In: ICCV (2019) 1, 3, 4, 9, 10, 11, 14

5. Avetisyan, A., Khanova, T., Choy, C., Dash, D., Dai, A., Nießner, M.: SceneCAD:
Predicting object alignments and layouts in RGB-D scans. In: ECCV (2020) 4, 10

6. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles.
In: ICCV (2019) 3

7. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for
video understanding? In: ICML (2021) 2, 4

8. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust
tracking-by-detection using a detector confidence particle filter. In: ICCV (2009)
3

9. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV (2020) 1, 2, 4, 5, 8, 12

10. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv:1512.03012 (2015) 9

11. Chen, Z., Tagliasacchi, A., Zhang, H.: Bsp-net: Generating compact meshes via
binary space partitioning. In: CVPR (2020) 5

12. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need
for semantic segmentation. In: NeurIPS (2021) 4

13. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In: ECCV (2016) 5

14. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017) 9

15. Danila Rukhovich, Anna Vorontsova, A.K.: ImVoxelNet: Image to voxels projection
for monocular and multi-view general-purpose 3d object detection. In: WACV
(2022) 1, 3, 4, 10, 11, 14

16. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: ICLR (2020) 4

17. Duzceker, A., Galliani, S., Vogel, C., Speciale, P., Dusmanu, M., Pollefeys, M.:
Deepvideomvs: Multi-view stereo on video with recurrent spatio-temporal fusion.
In: CVPR (2021) 1, 3, 9, 11, 14

18. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. TPAMI 40(3), 611–625
(2017) 3

19. Engelmann, F., Rematas, K., Leibe, B., Ferrari, V.: From points to multi-object 3d
reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 4588–4597 (2021) 5

20. Fei, X., Soatto, S.: Visual-inertial object detection and mapping. In: ECCV (2018)
4



16 Tyszkiewicz et al.
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