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S.1 Overview

We document here some addition implementation details, results and further
hyperparameter experiments. In Sec. S.2, the complete details of the Fully Con-
volutional ResNet backbone are provided, in sufficient detail to recreate the
network. In Sec. S.3, the 6 DoF pose estimation accuracy results for each indi-
vidual object in the three data sets are presented, as well as some extra bounding
box image samples. Finally in Sec. S.4, six additional experiments are included
investigating the impact of the number of keypoints, the number of skip con-
nections in the backbone network, the use of a combined vs. separate networks
for each keypoint, the depth of the backbone network, the accumulator space
resolution, as well as the impact of combining the three different voting schemes
into various multi-scheme voting configurations.

S.2 ResNet Backbone Structure

As shown in Table S.10, we modified ResNet into a Fully Convolutional Network.
To start with, we replaced the Fully Connected Layer with a convolutional layer
for the following up sampling layers. We then applied up-sampling to the fea-
ture map with a combination of convolution, bilinear interpolations, and skip
concatenations from the residual blocks. We apply more skip layers than did
PVNet [S.17], under the assumption that the convolutional feature maps would
preserve more local features than the alternative bilinear interpolation, espe-
cially for deeper small scale feature maps. This design choice was supported by
the experiment described in Sec. S.4.2.

We conducted an experiment on three objects, ape, driller and eggbox in
Occlusion LINEMOD with different fully convolutional ResNets structures. Each
network is trained until fully convergence with consistent hyper parameter sets.
The resutls are shown in Table S.1. Deeper ResNet has a tiny performance
improvement on three objects tested with a minor sacrifice of speed. We ended
up with ResNet152 32s when conducting the full test on all three datasets.
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Table S.1: ADD(S) metrics for 3 LMO objects on different ResNet backbones
with ICP.

LMO ape driller eggbox

ResNet18 32s 60.2 77.9 81.9

ResNet34 32s 60.2 77.9 81.9

ResNet50 32s 60.8 78.4 81.9

ResNet101 32s 61.3 78.4 81.9

ResNet152 32s 61.3 78.8 82.3

S.3 Accuracy Results Per Object and BOP Benchmark

The detailed LINEMOD and Occlusion LINEMOD ADD(s) results, and the
YCB-Video ADD(s) and AUC results categorized per object are listed in Ta-
ble S.8, Table S.7 and Table S.9, respectively. Some additional successful images
showing recovered and ground truth bounding boxes are displayed in Figure S.3.

As can be seen in Table S.8, the original LINEMOD dataset is mostly satu-
rated, with results from a number of different methods that are close to perfect.
Nevertheless, RCVPose+ICP outperformed all alternatives at 99.7%, with 100%
ADD(s) for three objects, including the only perfect scores for the driller and
holepuncher objects.

The results in Table S.7 show Occlusion LINEMOD to be quite challenging.
This is not only because of the occluded scenes, but is also due to the fact that
the meshes are not very precisely modelled, and that some ground truth poses
are not accurate for some cases.

The YCB-Video dataset has two evaluation metrics, as shown in Table S.9.
In general, AUC is more foregiving than ADD(s) since AUC has a tolerance of
up to 10 cm [S.26]. For some objects like the master chef can and the power drill,
RCVPose performs slightly worse in AUC compared to PVN3D [S.4], while still
performing better in ADD(s).

All three datasets were also evaluated by the standardized metrics proposed
by BOP [S.7]. The results in Table. S.2 show that our average recall outperformed
CosyPose [S.10] on LINEMOD and occlusion LINEMOD. Although we did not
perform better on YCB-Video, we did perform better for the average results
over all three datasets. Our method also runs at 18 fps which is also more time
efficient compared to 0.36 fps for CosyPose.

S.4 Extra Hyperparameter Experiments

S.4.1 Number of Keypoints

Previous works have used between 4 [S.16], and up to 8 [S.4, S.17] or more [S.18]
keypoints per object, selected from bounding box corners [S.20, S.21, S.13] or
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Table S.2: LINEMOD, Occlusion LINEMOD and YCB-Video evaluated based on BOP
Average Recall metrics [S.7]

ARV SD ARMSSD ARMSPD Average
Method LM LMO YCB-V LM LMO YCB-V LM LMO YCB-V AR

PVNet [S.17] - 0.43 - - 0.54 - - 0.75 - -
EPOS [S.6] - 0.39 0.63 - 0.50 0.68 - 0.75 0.78 -
SO-Pose [S.1] - 0.44 0.65 - 0.58 0.73 - 0.82 0.76 -
CosyPose [S.10] 0.67 0.58 0.83 0.81 0.75 0.90 0.84 0.83 0.85 0.78
RCVPose+ICP 0.74 0.68 0.86 0.83 0.77 0.86 0.83 0.79 0.86 0.80

using the FPS algorithm [S.18, S.4, S.17]. It has been suggested that a greater
number of keypoints is preferable to improve robustness and accuracy [S.4, S.17],
especially for pure RGB methods in which at least 3 keypoints need to be visible
for any view of an object to satisfy the constraints of the P3P algorithm [S.19,
S.2].

We examined the impact of the number of keypoints on pose estimation
accuracy. Sets of 3, 4 and 8 keypoints were selected for the ape, driller and
eggbox LINEMOD objects, using the Bounding Box selection method described
in Sec. 4.5 in the main paper. The results indicate that increasing the number of
RCVPose keypoints does not impact pose estimation accuracy, which changed
at most only 0.4% between these settings for all three objects. This is likely
due to the high accuracy of keypoint location estimation under radial voting,
which removes the added benefit of redundant keypoints. Given that the time
and memory expense scale linearly with the number of keypoints, we settled
upon the use of the minimal 3 keypoints for RCVPose for all of our experiments.

S.4.2 Number of Skip Connections

There were five different network architectures proposed in the intial ResNet
paper [S.3]. While some 6 DoF pose recovery works use variations of ResNet-
18 [S.17, S.23, S.27, S.22] others use ResNet-50 [S.24, S.15]. Some customize
the structure by converting it to an encoder [S.22, S.15, S.27, S.23], adding
extra layers and skip connections [S.17] while others use the original ResNet
unaltered [S.4, S.14].

We conducted an experiment which examined the impact of the number of
skip connections on mean keypoint estimation error ϵ̄. We increased the number
of skip connections for ResNet-18, from 3 to 5. Such skip connections serve
to improve the influence of image features during upsampling. The results are
displayed in Table S.3, and show that increasing the skip connections from 3 to 5,
decreased both the mean and the standard deviation of the keypoint estimation
error by a large margin, in all cases. We included 5 skip connections in our
architecture, for all experiments, as shown in Fig S.1.
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Table S.3: Average keypoint estimation error mean (µ [mm]) and standard deviation
(σ [mm]) for different ResNet-18 backbone skip connections. Increasing the skip con-
nections reduced the error of the estimation

# of skip connections
3 5

µ σ µ σ

ape 2.4 1.1 1.8 0.8

driller 3.6 1.2 2.7 0.8

eggbox 3.5 1.7 2.4 1.2

Table S.4: Keypoint localization error, for training all three keypoints’ radii simul-
taneously in one network and separately in three networks: ϵ̄ mean (µ{sim|sep}) and
standard deviation (σ{sim|sep}) for radial voting schemes

ϵ̄ [mm]
simultaneously separately
µsim σsim µsep σsep

ape 1.7 0.9 1.3 0.7
driller 2.6 1.4 2.2 1.0
eggbox 2.5 1.3 2.0 0.7

S.4.3 Number of Networks

Some of the 6 DoF pose estimators trained a single distinct network for each
individual object [S.4, S.17, S.23] whereas other multi-class methods trained a
single network for all classes combined [S.9, S.25, S.1]. We conducted an ex-
periment on the optimal configuration of the number of networks. As shown
in Table. S.4, The radii regression is more accurate when a single network is
trained separately on each keypoint compared to training simultaneously on all
three keypoints per object. Therefore, we trained separate networks for each key-
point among each objects to achieve the best performance, with a small sacrifice
of the time performance.

S.4.4 ResNet Backbone Depth

A further experiment tested different ResNet depths, from 18 to 152 layers.
The results are plotted in Fig. S.2, and indicate that the substantially deeper
networks exhibit only a minor reduction in average keypoint estimation error ϵ̄.

Despite the rather minor improvement due to increased depth, we neverthe-
less used ResNet-152 with 5 skip connections in the RCVPose in our experiments,
as shown in Fig. S.1 compared to PVNet. It is likely that we would have received
very similar results had we based our backbone network on ResNet-18, albeit
with a faster training cycle and smaller memory footprint.
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Fig. S.1: Backbone network structure for (a) RCVPose and (b) PVNet: Denser
skip connections allow more local image features to be kept during upsampling

S.4.5 Accumulator Space Resolution

We varied the accumulator space resolution to evaluate the balance of accuracy
and efficiency. Resolution ρ refers to the linear dimension of a voxel edge (i.e.
voxel volume = ρ3). We selected 6 different resolutions from ρ = 1 mm to 16
mm, and ran the voting module for each ρ value with the same system, for all 3
scaled bounding box keypoints of all test images of the LINEMOD ape object.

The results are listed in Table S.5 which shows the means µr and standard
deviations σr of the keypoint estimation errors ϵ̄ and ADD metric, and both the
time and space efficiencies, for varying voxel resolutions. As expected, the voting
module was faster and smaller, and the keypoint estimation error was greater,
at coarser resolutions. The ADD value, which is the main metric used to identify
a successful pose estimation event, remains nearly constant up to a resolution
of 5 mm. The ρ = 5 mm voxel size therefore achieved both an acceptable speed
of 24 fps, an efficient memory footprint of 3.4 Mbtyes, and close to the highest
ADD value, and so it was subsequently used throughout the experiments.
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Fig. S.2: Mean keypoint estimation error [mm] vs. ResNet depth

Table S.5: Accumulator space resolution ρ [mm] impact on accuracy ϵ̄ [mm], ADD
[%], processing speed [fps], and memory [Mbyte], for LINEMOD ape test images. The
processing speed includes only the accumulator space time performance

ρ ϵ̄ [mm] ADD speed memory
[mm] µr σr [%] [fps] [Mbyte]

0.5 1.65 0.63 61.5 1.6 4×9573 = 3517
1 1.75 0.81 61.5 5 4×4793 = 440.61
2 2.33 0.52 61.3 12 4×2393 = 54.81
4 6.27 0.72 61.3 20 4×1183 = 6.57
5 6.33 0.69 61.3 24 4×953 = 3.43
8 11.73 2.37 55.2 32 4×583 = 0.78
16 17.92 5.52 45.7 40 4×283 = 0.09

S.4.6 Ensemble Multi-scheme Voting

The accumulator space is represented exactly the same for all three voting
schemes, and is handled in exactly the same manner to extract keypoint loca-
tions through peak detection, once the voting has been completed. It is therefore
possible and straightforward to combine voting schemes, by simply adding their
resulting accumulator spaces prior to peak detection.

We implemented this and compared the impact of all possible combinations
of offset, vector, and radial voting schemes. The results are shown in Table S.6,
which also includes the results from each individual voting scheme for compar-
ison. It can be seen that the radial voting scheme outperforms all other alter-
natives, yielding a lower mean and standard deviation of keypoint estimation
error ϵ̄. The next best alternative was the combination of all three schemes,
which was greater than 3.5X less accurate than pure radial voting. Combing
radial and offset voting slightly improved results over pure offset voting in two
of the three objects. Curiously, combining radial and vector voting degraded



Vote from the Center: 6 DoF Pose Estimation in RGB-D Images 7

Table S.6: Combined Accumulator Space: ϵ̄ mean (µ{v|o|r}) and standard deviation
(σ{v|o|r}) for different combination of 3 voting schemes, with r̄ = mean distance of
keypoints to object centroid

ϵ̄ [mm]
vector

vector vector radial + offset
+ offset + radial + offset + radial vector offset radial

r̄ [mm] µv σv µo σo µr σr µr σr µr σr µr σr µr σr

ape 142.1 20.2 12.4 12.7 6.7 9.8 6.2 7.2 1.2 12.5 7.6 10.4 5.3 1.8 0.8

driller 318.8 22.3 11.7 13.3 7.9 8.7 3.4 5.7 2.3 11.3 8.2 9.5 3.5 2.7 0.8

eggbox 197.3 21.6 13.5 17.4 10.5 12.1 5.2 6.4 3.3 13.7 8.5 11.4 4.7 2.4 1.2

Table S.7: Occlusion LINEMOD Accuracy Results. Non-symmetric objects are evalu-
ated with ADD, and symmetric objects (annotated with ∗) are evaluated with ADD-s

Object

Mode Method ape can cat driller duck eggbox∗ glue∗ holepuncher ADD(s)[%]

Oberweger [S.12] 12.1 39.9 8.2 45.2 17.2 22.1 35.8 36.0 27.1
Hu et al. [S.8] 17.6 53.9 3.3 62.4 19.2 25.9 39.6 21.3 30.4
Pix2Pose [S.14] 22.0 44.7 22.7 44.7 15.0 25.2 32.4 49.5 32.0
DPOD [S.27] - - - - - - - - 32.8
PVNet [S.17] 15.8 63.3 16.7 25.2 65.7 50.2 49.6 39.7 40.8

RGB

PPRN [S.22] - - - - - - - - 58.4

YOLO6D [S.21] - - - - - - - - 6.4
SSD6D+ref [S.9] - - - - - - - - 27.5RGB
PoseCNN [S.26] 9.6 45.2 0.9 41.4 19.6 22.0 38.5 22.1 24.9+D ref
DPOD+ref [S.27] - - - - - - - - 47.3

PVN3D [S.4] 33.9 88.6 39.1 78.4 41.9 80.9 68.1 74.7 63.2
RCVPose 60.3 92.5 50.2 78.2 52.1 81.2 72.1 75.2 70.2RGB-D

RCVPose+ICP 61.3 93 51.2 78.8 53.4 82.3 72.9 75.8 71.1

results for all objects compared to pure vector voting, as did combining vector
and offset voting. Based on these results, it seems possible that there may be
better ways than simply adding the individual accumulator spaces to ensemble
the information from these three voting schemes to reduce error further.
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Fig. S.3: Occluded LINEMOD sample results: Blue box = ground truth, green box =
estimate
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Table S.10: ResNet Backbone structure compared to PVNet
ResNet Backbone Strcture

Layer ResNet-152 32s(RCVPose) ResNet-101 32s ResNet-50 32s ResNet-34 32s ResNet-18 32s ResNet-18 8s(PVNet)

conv1 7× 7, 64, stride 2

conv2
3× 3 max pool, stride 2 1× 1, 64

3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

[
3× 3, 64
3× 3, 64

]
× 3

[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 2

conv3

 1× 1, 128
3× 3, 128
1× 1, 512

× 8

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

[
3× 3, 128
3× 3, 128

]
× 4

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 2

conv4

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

[
3× 3, 256
3× 3, 256

]
× 6

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 2

conv5

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

[
3× 3, 512
3× 3, 512

]
× 3

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 2

conv6

 3× 3, stride 1, padding 1
batch norm

ReLU


up5


conv 3× 3, stride 1, padding 1

batch norm
ReLU

bilinear interpolation


up4


conv 3× 3, stride 1, padding 1

batch norm
ReLU

bilinear interpolation


up3


conv 3× 3, stride 1, padding 1

batch norm
ReLU

bilinear interpolation



conv 3× 3, stride 1, padding 1

batch norm
Leaky ReLU

bilinear interpolation


up2


conv 3× 3, stride 1, padding 1

batch norm
ReLU

bilinear interpolation



conv 3× 3, stride 1, padding 1

batch norm
Leaky ReLU

bilinear interpolation



up1


conv 3× 3, stride 1, padding 1

batch norm
ReLU

bilinear interpolation



conv 3× 3, stride 1, padding 1

batch norm
Leaky ReLU

bilinear interpolation


conv7

 3× 3, stride 1, padding 1
batch norm

ReLU

  3× 3, stride 1, padding 1
batch norm
Leaky ReLU


conv8 1× 1, stride 1, padding 0 1× 1, stride 1, padding 0
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