
Supplementary Material: Long-tailed Instance
Segmentation using Gumbel Optimized Loss

In the supplementary material we discuss implementation details of Gumbel
activation, and we show additional experiments on long-tailed instance segmen-
tation. In Section 1, we discuss implementation details and visualizations of
Gumbel activation; in Section 2, we show detailed ablation study of GOL and
its application to larger models.

1 Gumbel activation

1.1 Weights and biases initialization

Gumbel activation has exponential positive gradients, making it difficult to ini-
tialize due to arithmetic errors caused by the gradient overflow. For this reason,
one should initialize the bias and weight terms of the classification layer with
values that will produce small initial gradient. First, all weight terms WT are
initialized to a small value of 0.001, which will result in that all qi = WT z+b ≈ b,
then the total gradient will be:

∇H(ηγ(q), y) ≈ − exp(−b) + (C − 1)
exp(−b)

exp(exp(−b))− 1
(1)

where C is the total number of classes in the dataset. As the total gradient
should be zero initially, we have:

∇H(ηγ(q), y) = 0

(C − 1)
exp(−b)

exp(exp(−b))− 1
= exp(−b)

b = − log(log(C)

(2)

For the case of LVIS dataset that has 1,203 classes plus one for the background,
we set the weightsWT equal to 0.001 and the bias equal to − log(log(1204) ≈ −2.
These values produce small initial gradients and they prevent gradient overflow.

1.2 Temperature in Gumbel activation

We have also studied the choice of non Standard Gumbel activation, as shown
in Figure 1.i, for different choices of temperature σ:

ηγ(qi;σ) = exp(− exp(−qi
σ
)) (3)

We observe that, choosing a larger temperature flattens Gumbel activation curve,
while choosing a smaller temperature steepens the curve. Gumbel activation has
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a double exponent as shown in Eq. 3, which makes it difficult to select values of σ
due to arithmetic instability. In our case, we choose values [0.8, 0.9, 1.0, 1.1, 1.2]
and we observe that the best choice is σ = 1 as it has better overall AP and
AP r as shown in 1.ii.

Fig. 1. (i): Gumbel activation using different temperature σ. Selecting a larger σ flat-
tens the curve, while selecting a smaller σ makes the curve steeper. (ii): Performance
of MaskRCNN-R50 on LVISv1 using training schedule 1x and random sampler, for
different choices of temperature σ. The best performance is observed for σ = 1.0.

1.3 Gumbel activation and cut-off error

Gumbel activation has a double exponent, as shown in Eq. 3, this makes it
numerically unstable for large inputs and hinders training. For this reason, we
tested different ranges of values and decided to clip the input space to be within
the range of [−4, 10]. Using this range of values the cut-off error is e-5 and
training commences without overflow errors. In the future, we will develop a
solution that prevents numerical instability, so that we do not have to clip the
input space.

1.4 Average Positive Gradient

We visualize the average positive gradient g, each category receives during train-
ing for 12 epochs using MaskRCNN. We use logarithmic scale to measure g in
dB because the average gradient is small, especially for rare categories. As Fig-
ure 2 indicates, using Gumbel activation, the positive gradient is on average
7dB larger than the case of using Sigmoid, while for the case of rare categories,
Gumbel produces gradients that are 10dB larger.

In conclusion, the network learns better the rare categories by using Gumbel
activation than by using Sigmoid activation, as the gradient is larger with Gum-
bel. This is also reflected in the formula of the positive Sigmoid gradient and
the positive Gumbel gradient. In detail, Sigmoid positive gradient is bounded
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Fig. 2. Average Positive Gradient g per category, measured in decibel, (dB). Gumbel
activation produces larger gradients for rare categories and facilitates rare category
learning.

to values (−1, 0), while Gumbel positive gradient is exponential and has values
that reach (−∞, 0). This enables Gumbel activation to produce larger gradients
than Sigmoid and it is useful for rare categories, where the gradient updates are
scarce.

1.5 Gumbel Optimised Loss

Our GOL method is based in DropLoss [6]. It is described as follows:

LGOL = −
C∑

j=1

log(wDrop
j p̄j), p̄j =

{
ηγ(qi), if yj = 1

1− ηγ(qi), if yj = 0
(4)

wDrop
j =

{
1− Tλ(fj)(1− yj), if E(r) = 1

w ∼ Ber(µfj ), otherwise
(5)

µfj =

{
(nrare + ncommon)/nall, if Tλ(fj) = 1

nfrequent/nall, otherwise
(6)

where E(r) is a binary indicator function that outputs 1 if a region proposal r is
foreground, Tλ(fj) is a rare category indicator that outputs 1 if the frequency of
category j is lower than λ, w ∈ {0, 1} is a random variable drawn from Bernoulli
distribution and µfj is the shape parameter that is computed according to the
foreground region proposals in the training batch.
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Table 1. Ablation study, using MaskRCNN, Resnet50 and training schedule 2x.

RFS Gumbel EQL Enh DropLoss AP AP r AP c AP f AP b

18.7 1.1 16.2 29.2 19.5
✓ 22.0 8.9 20.3 29.6 22.4

✓ 21.6 3.8 21.7 29.2 22.5
✓ ✓ 23.9 11.4 23.4 29.9 24.2

✓ 23.7 13.3 23.0 29.0 24.7
✓ ✓ 23.5 13.8 22.2 29.2 24.3
✓ ✓ 25.3 17.4 24.9 29.2 26.0
✓ ✓ ✓ 26.1 18.4 25.9 29.8 26.8

✓ ✓ ✓ ✓ 26.9 18.1 26.5 31.3 26.8

✓ ✓ ✓ 25.6 14.5 26.1 29.9 25.1
✓ ✓ ✓ ✓ 27.7 21.4 27.7 30.4 27.5

2 Long-tailed instance segmentation

2.1 Ablation Study

In Table 1, we conduct an ablation study of Gumbel activation, RFS [4], EQL
[9], DropLoss [6], Normalised Mask [10] and stricter Non Maximum Suppression
(NMS) threshold. We denote the stricter NMS threshold and Normalised Mask
enhancements as (Enh).

As shown in Table 1 the best overall performance is achieved with Gumbel,
RFS, Enh and DropLoss, we denote this pipeline as Gumbel Optimised Loss
(GOL). The best performance on AP f is achieved using Gumbel, RFS, Enh and
EQL, we denote this pipeline as GOL*.

Total Performance Our GOL method significantly boosts the vanilla MaskR-
CNN AP by 9.0%, and it largely improves AP r by 20.3%, AP c by 11.5%, AP f

by 1.2% and AP b by 8.0%.

Table 2. MaskRCNN with Resnet50, schedule 1x, EQLv1 loss [9], DropLoss [6], ACSL
[11] and Federated Loss [13]. Gumbel activation boosts AP of all models.

Method Activation AP AP r AP c AP f AP b

EQL†[8] Sigmoid 18.6 2.1 17.4 27.2 19.3
EQL Gumbel 21.7 9.6 20.6 28.2 21.8

DropLoss†[6] Sigmoid 19.8 3.5 20.0 26.7 20.4
DropLoss Gumbel 22.0 10.0 22.1 27.1 21.9

ACSL [11] Sigmoid 20.7 9.6 19.7 26.6 21.2
ACSL Gumbel 21.0 10.9 19.8 26.7 21.1

Federated Loss [13] Sigmoid 17.6 1.8 14.9 27.5 18.2
Federated Loss Gumbel 20.1 6.0 18.5 28.0 20.5
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Table 3. Comparison of activations in various frameworks using 1x schedule.

Method Framework AP AP r AP c AP f AP b

Sigmoid
MaskRCNN-ResNet50[5]

16.4 0.8 12.7 27.3 17.2
Softmax 15.2 0.0 10.6 26.9 16.1
Gumbel 19.0 4.9 16.8 27.6 19.1

Sigmoid
MaskRCNN-ResNet101

17.8 0.9 14.5 28.8 18.8
Softmax 16.7 0.5 12.5 28.5 17.7
Gumbel 20.6 6.4 18.5 29.2 21.0

Sigmoid
MaskRCNN-ResNeXt101

19.6 1.0 16.5 31.2 20.7
Softmax 18.6 0.6 14.5 31.1 19.7
Gumbel 22.6 5.9 21.3 31.4 22.8

Sofmax
Cascade MaskRCNN-Resnet101[1]

18.8 0.6 15.7 30.3 21.3
Gumbel 22.9 6.6 22.4 30.7 25.8

Sofmax
Hybrid Task Cascade-ResNet101[2]

19.1 0.6 15.8 31.0 21.1
Gumbel 23.3 6.1 22.7 31.4 25.6

2.2 Results on Larger Frameworks and SOTA Losses

In Table 2, we show detailed results when using Gumbel activation and SOTA
long-tailed instance segmentation loss functions. In Table 3, we show detailed ex-
perimental results using Gumbel activation and common instance segmentation
frameworks. In all cases, Gumbel activation improves the overall segmentation
performance of models.

2.3 Results on Larger Models

We report the performance of our methods using larger models such as MaskR-
CNN with ResNet-101. As shown in Table 4, using MaskRCNN ResNet-50, GOL
significantly outperforms the best method, LOCE [3] by 1.1% on AP , by 2.9%
on AP r and by 1.5% on AP c, using smaller training budget and the same en-
hancements.

Using MaskRCNN ResNet-101, GOL largely surpasses the best state-of-the-
art Seesaw [10] by 0.9% in overall AP , 2.8% in AP r, 1.0% in AP c and 0.3% in
AP b using the same enhancements and RFS sampler. It also surpasses LOCE
by 1.0% in overall AP using fewer training epochs.

Finally, our GOL* method has the best AP f in both MaskRCNN ResNet-
50 and MaskRCNN ResNet-101 backbones, thus it is useful if AP f is most
important.

2.4 Object Distributions

We further show more examples of object distributions in LVIS v1 validation
set. As shown in Figure 4, Gumbel activation produces object distributions that
are closer to the target distribution as they have lower K-L divergence.
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Table 4. Comparative results on LVISv1 using MaskRCNN-FPN and schedule 2x.

Method Sampler Backbone AP AP r AP c AP f AP b

Softmax

random MaskRCNN ResNet50

18.7 1.1 16.2 29.2 19.5
LOCE[3] 23.8 8.3 23.7 30.7 24.0
EQLv2[8] 25.5 17.7 24.3 30.2 26.1
Seesaw[10] 25.0 16.1 24.2 29.7 25.6
Disalign[12] 24.2 13.2 23.8 29.3 24.7
GOL (ours) 25.6 14.5 26.1 29.9 25.1

LOCE[9] MFS[9] MaskRCNN ResNet50 26.6 18.5 26.2 30.7 27.4

NorCal[7]

RFS MaskRCNN ResNet50

25.2 19.3 24.2 28.6 -
EQLv2[8] 25.8 17.3 25.4 30.0 26.2
Seesaw[10] 26.4 19.5 26.1 29.7 27.6

GOL* (ours) 26.9 18.1 26.5 31.3 26.8
GOL (ours) 27.7 21.4 27.7 30.4 27.5

EQLv2[8]
random MaskRCNN ResNet101

27.2 20.6 25.9 31.4 27.9
Seesaw[10] 27.1 18.7 26.3 31.7 27.4
GOL (ours) 27.0 16.1 27.4 31.2 26.8

LOCE[9] MFS[9] MaskRCNN ResNet101 28.0 19.5 27.8 32.0 29.0

NorCal[7]

RFS MaskRCNN ResNet101

27.3 20.8 26.5 31.0 28.1
Seesaw[10] 28.1 20.0 28.0 31.8 28.9
GOL*(ours) 28.0 19.3 27.5 32.4 28.3
GOL(ours) 29.0 22.8 29.0 31.7 29.2
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