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Fig. 1: We seek to align two point clouds in RGB-D data. To better leverage
color, we propose PCR-CG, a 2D-3D projection module that explicitly lifts 2D
deep color features to 3D geometry representation. A pair of RGB-D frames are
used as input, where each RGB-D frame is composed of a color image and a depth
frame. 3D geometry is represented by the point cloud that is generated from
depth frame. We leverage a pre-trained 2D network to predict correspondences
between frames and extract regional features from color images. The 2D regional
features are further lifted to 3D via our proposed 2D-3D projection module in
an explicit manner.

Abstract. In this paper, we introduce PCR-CG: a novel 3D point cloud
registration module explicitly embedding the color signals into geome-
try representation. Different from the previous SOTA methods that used
only geometry representation, our module is specifically designed to effec-
tively correlate color and geometry for the point cloud registration task.
Our key contribution is a 2D-3D cross-modality learning algorithm that
embeds the features learned from color signals to the geometry represen-
tation. With our designed 2D-3D projection module, the pixel features
in a square region centered at correspondences perceived from images
are effectively correlated with point cloud representations. In this way,
the overlap regions can be inferred not only from point cloud but also
from the texture appearances. Adding color is non-trivial. We compare
against a variety of baselines designed for adding color to 3D, such as
exhaustively adding per-pixel features or RGB values in an implicit man-
ner. We leverage Predator as our baseline method and incorporate our
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module into it. Our experimental results indicate a significant improve-
ment on the 3DLoMatch benchmark. With the help of our module, we
achieve a significant improvement of 6.5% registration recall with 5000
sampled points over our baseline method. To validate the effectiveness of
2D features on 3D, we ablate different 2D pre-trained networks and show
a positive correlation between the pre-trained weights and task perfor-
mance. Our study reveals a significant advantage of correlating explicit
deep color features to the point cloud in the registration task.

1 Introduction

With commodity depth sensors commonly available, such as Kinect series, a va-
riety of RGB-D datasets are created [11,47,3,41]. With recent breakthroughs in
deep learning and the increasing prominence of RGB-D data, the computer vision
community has made a tremendous progress on analyzing point cloud [33] and
images [18,17]. Recently, we have observed a rapid progress in cross-modality
learning between geometry and colors [21,26,25,42,9,7]. However, prior work
mainly focused on high-level semantic scene understanding tasks, such as se-
mantic/instance segmentation [12,24] and object detection [31]. Compared to
high-level tasks, cross-modality learning between color and geometry is less ex-
plored in low-level tasks, such as point cloud registration. In this paper, we
discuss correlating RGB priors for aligning two partial point clouds.

Point cloud registration has been speedily developed because of its wide ap-
plications [23,2,46,14,5]; its 2D counter-part has been developed even earlier
and achieved great success [29] in many systems, such as visual SLAM [43].
Mainstream methods adopt a first-correspondences-then-transformation man-
ner, namely estimating transformations between two frames based on these cor-
respondence matching. In this context, correspondence-matching-based meth-
ods [37,48,29] have showed appealing results in the 2D domain. However, cur-
rent deep learning based methods in 3D merely use geometry as the only input.
Therefore, exploring to combine deep RGB features is valuable and of great im-
portance to the point cloud registration task. In this manner, a variety of existing
2D approaches and pre-trained models can also be further leveraged in 3D point
cloud registration task.

Finding correspondences is essential for calculating the transformation ma-
trix between two frames, and correspondences only appear in the overlap region.
In this context, estimating the overlap region of two frames is critical for point
cloud registration. Intuitively, we can identify the overlap regions not only from
geometric inputs like point cloud, but also from color signals like images. Given
this observation, we propose to embed color signals into point cloud represen-
tation, so as to effectively predict 3D correspondences for the registration task.
To this end, we propose PCR-CG, a novel module that explicitly embeds RGB
priors into the geometry representation for the point cloud registration.

In our work, we build upon the successful Predator [23], following the stan-
dard point cloud registration pipeline, namely first finding correspondences and
then using RANSAC to estimate the rotation and translation matrices between
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two frames of point clouds. To enable the usage of RGB values from captured
RGB-D data, our approach introduces three steps. First, a 2D pre-trained neural
network [37] is used to predict pixel correspondences between pure RGB frames.
Based on the correspondences, we extract square regions centered at each cor-
respondence pixel. Furthermore, the 2D pre-trained neural network summarizes
the features from pixels in each region. We investigate the effectiveness of 2D
pre-trained features in the 3D task by trying different 2D pre-trained weights,
such as ImageNet and Pri3D [21] pre-trained models. We note that the 2D mod-
els are pre-trained on different datasets. In this context, the transfer ability of
the 2D part shows promising results. In this manner, we are able to take advan-
tage of massive existing 2D pre-trained models. Secondly, we propose a 2D-3D
projection module to explicitly project the 2D features to the 3D point cloud
region by region (centered at each correspondence pixel), according to the cam-
era intrinsic and transformation matrix. We exhaustively explore the possible
designs, e.g., implicitly concatenating per-pixel features to each point. Finally,
we demonstrate that the design of explicitly projecting the deep color features
in overlap-aware regions surpass implicit manner in our ablation studies.

Following Predator [23], we evaluate our work on 3DMatch and the more
competitive and difficult 3DLoMatch [23] benchmark. In both benchmarks, we
observe significant improvements in our proposed color and geometry learning
strategy. Our approach outperforms the state-of-the-art method by a large mar-
gin of registration recall on the 3DLoMatch benchmark.

In summary, the contributions of our work are three-fold:

– We introduce a novel 2D-3D projection module that explicitly embeds the
2D color into the point cloud for registration task.

– We experimentally show that our method outperforms the baseline by a sig-
nificant gap of 6.5% registration recall with 5000 sampled points on the more
challenging 3DLoMatch benchmark.

– We conduct empirical studies and show the transfer ability of 2D pre-trained
weights for 3D point cloud registration tasks.

2 Related Work

Advancements in deep learning enable fast development in many high-level and
low-level tasks. In this section, we firstly review point cloud and image regis-
tration tasks, and then discuss a few additional relevant works in the area of
multi-modal learning across color and geometry.

Point Cloud Registration Point Cloud Registration plays an important role in
the computer vision community. Most successful methods in this field start with
a low-level task, namely correspondence matching. A transformation matrix can
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then be estimated from the predicted correspondences. Correspondences match-
ing have been investigated even before deep learning era. Traditional machine
learning methods and hand-crafted descriptors, such as ICP [4,8] and SIFT [28],
have drawn great attention back then. Color ICP [30] leverages both color and
geometry to align two partial point clouds, but with traditional machine learn-
ing optimizations. And the field is moving even faster since deep learning era.
Leveraging the powerful deep learning features to learn rotation-invariant de-
scriptors [10,6] for correspondences that are further fed into RANSAC for reg-
istration is the most successful story nowadays. Following the same pipeline,
Predator [23] achieves the state-of-the-art results and first proposes to solve the
registration problem on low-overlap frames. CoFiNet [46] proposes a coarse-to-
fine manner on the point cloud to speed up the inference. GeoTransformer [34]
leverages transformer on geometry to boost the point cloud registration. How-
ever, these prior work only use geometry as the single-source input. In this paper,
we build upon their framework and propose an effective module that explicitly
fuses the overlap regions learned from 2D color signals. BYOC [15] transfers the
visual signals to train a geometric encoder. UnsupervisedR&R [14] uses differ-
entiable rendering to enforce photometric and geometric consistency. Previous
methods focus on self- or unsupervised learning on color signals. Our approach
on the other hand discusses effectively making full use of RGB-D data as inputs.

Image Registration As the counterpart of 3D point cloud registration, 2D
image registration contributes significantly to the computer vision community.
It enables many high-level applications, such as 3D Reconstruction and visual
SLAM [39,40]. Compared to point cloud registration, image registration uses
only color input [38,35] and takes advantage of many existing pre-trained 2D
network, such as ResNet with ImageNet pre-trained weights. The success of 2D
image registration shows the possibility of learning registration from pixel input.
Besides, the motivation of taking advantage of massive existing 2D pre-trained
models suggests incorporating 2D signals into 3D registration task. In this work,
we explore how to effectively use 2D signals on 3D registration task.

2D-3D Multi-Modal Learning Joint learning from color and geometry signals
has been researched in many high-level tasks, such as in both 2D and 3D scene
understanding [19,12,31,21,26,22,27]. 3D-SIS [19] proposes to implicitly lever-
age the color signal for 3D instance segmentation and detection tasks. Reval-
Net [20] adopts the similar idea of implicitly fusing color and geometry for 3D
instance completion task. ImVoteNet [31] adds a 2D detector in addition to
VoteNet [32] to explicitly use 2D color input. 3D-to-2D Distillation [27] presents
a method to fuse 3D features for 2D semantic segmentation tasks. BPNet [22]
uses a bidirectional projection module to mutually learn 2D-3D signals for both
2D and 3D semantic segmentation tasks. Besides scene understanding tasks, 2D-
3D learning is also explored in representation learning. Pri3D [21] proposes to
learn 2D representation in a pre-training paradigm for 2D scene understanding.
P4Contrast [26] learns 3D representation from a novel 2D-3D loss for 3D scene
understanding. Image2Point [45] boosts 3D point cloud understanding with 2D
image pre-trained models. However, most of the previous research focus on high-
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Fig. 2: PCR-CG Pipeline. The pipeline is composed of a 3D network, a 2D
network and a 2D-3D projection module. Both 3D geometry and 2D images are
taken as input and used to jointly learn features for detecting correspondences.
The 2D network takes RGB images as input and extracts per-region features. A
2D-3D Projection Module is used to lift 2D pixel features into 3D point cloud.
The concatenated features are fed into 3D network for finding correspondences.
Due to our 2D-3D projection module, the 3D supervision can pass gradients
back to the 2D network, and, therefore, yield an end-to-end training.

level semantic tasks. In this paper, we discuss the color-geometry learning in the
point cloud registration task focusing on the low-level domain, i.e., predicting
correspondences for point cloud registration. Additionally, we study the transfer
ability of 2D pre-trained networks in the 3D registration task.

3 Methods

3.1 Data Representation

In our method, we use point cloud to represent the geometry input. At the same
time, RGB images are the input to a pre-trained 2D network.
Geometry Data Each training sample contains a pair of non-aligned RGB-
D frames. The transformation matrix that aligns them is used as the ground
truth. We use point cloud lifted by depth frame as geometric input and pre-
dict the correspondences between them. For pre-computing the ground truth of
correspondences, we transform one point cloud to the other, according to the
aforementioned transformation matrix. Then, correspondences are found by a
nearest neighbor search within a threshold in the Euclidean space.
Color Data We evaluate our method in RGB-D datasets, namely 3DMatch
and 3DLoMatch. In these datasets, each point cloud is fused by 50 consecutive
depth frames. The RGB images and depth images are in pairs. Therefore, each
point cloud is also associated with 50 RGB frames. We pick up the first and the
last RGB images for training and validation. Each RGB image is resized to the
resolution of 240x320 in pixels. Notably, we do not need ground truth for 2D
data, as the 2D network is pre-trained on other data.



6 Y. Zhang et al.

3.2 Projection Module

Insertion of the Projection Module Before entering into our method, we
have to revisit Predator [23]. In Predator, a point cloud is input to a 3D neu-
ral network. In the encoder, attention modules are used to correlate features
obtained from source and target frames. The correlated features are fed into a
decoder. The final layer outputs a score for each point to indicate its likelihood
on overlapped regions. Per-point features from the final layer are used for finding
correspondences. Next, correspondences are ranked based on the scores, and top-
k correspondences’ features are fed into RANSAC. Finally, RANSAC consumes
the features of selected correspondences to further estimate the transformation
matrix between the source and target frames. In this context, our module is
directly inserted at the beginning of the 3D network without interfering the rest
of the pipeline. The overview of the pipeline is illustrated in Fig. 2.
Lifting 2D to 3D To train on both color and geometry inputs, we propose
a novel module that embeds deep color features into 3D representations. Our
module PCR-CG takes the features extracted from RGB images and lifts them
to 3D. The 3D network consumes a pair of point clouds, while our 2D-3D projec-
tion module takes the corresponding pairs of RGB images. To concatenate the
features of 2D pixels into 3D points, we project XYZ coordinates of each point
cloud onto its associated image planes. In our setup, we select the first and the
last RBG images among 50 consecutive RGB-D frames that are used to generate
the point cloud. Since each point cloud is tied to two color views, we average
the feature vectors sampled from the overlapped regions. In the end, we append
the feature vectors from 2D pixels to 3D points. We illustrate this projection
procedure in Fig. 3. The 3D network remains the same as Predator [23] and we
adjust input dimensions of the first layer. The combined features are fed into the
KPConv encoder and are crossed at the bottleneck part via attention modules,
which is identical to Predator [23].
2D Pre-trained Networks We empirically find appending RGB values to
3D points brings less gain. Similar results are observed in ImVoteNet [31] and
3DMV [12], and we also confirm this in the low-level task. Therefore, we pro-
pose to lift deep color features rather than RGB values. In our module, the 2D
network is a standard ResUNet-50 backbone. We choose ResUNet since its en-
coder weights can be initialized by most popular 2D pre-trained models, such as
ImageNet, Pri3D [21] and SuperGlue [37]. In this manner, we can easily change
to different pre-trained networks. In ablation studies, we indicate that different
2D pre-trained weights have a significant influence on the 3D results.
Frame Selection Each point cloud is fused by 50 consecutive depth frames.
We propose to use the first and last frames considering the performance and
efficiency. Regarding the number of selected frames, we present the color coverage
in Fig. 4. We show an increasing registration recall with more views in the
ablation study.
Implicit vs. Explicit Projection Implicit projection lifts the features of ev-
ery pixel, while the other projects features of some certain pixels in an explicit
manner. In our design, we use a pre-trained 2D network, i.e., SuperGlue [37], to
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predict the correspondences between the source and target RGB frames. Then,
we project features extracted from the regions around the correspondences. In
this manner, the regions are lifted explicitly to 3D, which indicates a rough over-
lap estimated from color signals. We experimentally demonstrate the advantages
of explicit projection in the ablation study.
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3D to 2D Projection
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per-block featuresRGB Images

implicit features learning

explicit features learning

Fig. 3: PCR-CG: 2D-3D Projection Module. We introduce a novel 2D-3D Pro-
jection Module to lift 2D color features into 3D. The module takes the transfor-
mation matrix and depth map to project regional features to 3D point cloud.

4 Experimental Results

In this section, we show experimental results and ablation studies regarding the
proposed 2D-3D projection module. We focus on indoor data, namely 3DMatch
and 3DLoMatch. In the main result, different numbers of points are sampled
for registration in RANSAC. Additionally, we conduct ablation studies, such as
different projections and 2D pre-trained weights in Sec. 4.1.
Experiments Setup For training, we use the SGD optimizer with learning
rate 0.005 and a batch size of 1. We use the exponential learning scheduler, and
the learning rate is decreased by a factor of 0.95 in every epoch. During the
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One View Projection Two View Projection Three View Projection

Fig. 4: Non-black points take 2D features; black points indicate no features taken
from 2D. We observe not every point can be associated with the color features
with one image; with two views, most points have the coverage of projected
color features. However, adding the third view does not significantly improve
cover coverage. Therefore, we choose two views as a default setup.

test, we use open3D for feature matching and RANSAC. For 2D networks, we
use ResUNet-50 to extract per-pixel features. KPConv [44] is used as the 3D
Backbone.

Metrics We mainly compare the results on four metrics, namely Registration
Recall (RR), Feature Matching Recall (FMR), Relative Rotation Error (RRE),
and Relative Translation Error (RTE). RR is the main metric we compare on
and is most reliable, representing the fraction of pairs of point cloud, for which
the correct transformation parameters are found after correspondence matching
and RANSAC. Similar to Predator, we also report FMR, defined as the fraction
of pairs that has at least 5% inlier matches. RTE and RRE measure the devi-
ations from the ground truth pose. More specifically, RTE is computed by the
differences between two frames by L1 norm; RRE is the drifted degrees between
two frames registered by predicted transformation. Please refer to supplementary
materials for detailed explanations and mathematical definitions.

3DLoMatch We show results on 3DLoMatch in Tab. 1. In 3DLoMatch, each
pair of frames has at most 30% overlaps, and therefore it is a more challenging
benchmark. We compare our method with SOTA methods in terms of RR and
FMR. We show our method outperforms previous algorithms, including the most
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3DMatch 3DLoMatch
# Sampled Points 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall(%) ↑

3DSN [16] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [10] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [6] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [1] 97.4 97.0 96.4 96.7 94.8 75.5 75.1 74.2 69.0 62.7
Predator [23] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
CoFiNet [46] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6

Ours – PCR-CG 97.4 97.5 97.7 97.3 97.6 80.4 82.2 82.6 83.2 82.8

Registration Recall(%) ↑

3DSN [16] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [10] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [6] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [1] 88.8 88.0 84.5 79.0 69.2 58.2 56.7 49.8 41.0 26.7
Predator [23] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet [46] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0

Ours – PCR-CG 89.4 90.7 90.0 88.7 86.8 66.3 67.2 69.0 68.5 65.0

Table 1: Results on 3DMatch and 3DLoMatch. Our holistic approach combining
explicit deep color and geometric features results in significantly improved results
over previous approaches including the most recent CoFiNet. PCR-CG surpasses
our baseline Predator [23] by a large margin. Note that our approach uses the
same backbone and pipeline as Predator and does not include the coarse-to-fine
technique compared to CoFiNet [46]. Pri3D pre-trained model and two-view
projection (explicit) are used for our approach.

recent CoFiNet [46] on different numbers of sampled points. More specifically,
PCR-CG surpasses our baseline Predator by a large margin, especially with less
sampled points, e.g., +7.7% on RR and +7.5% on FMR respectively with 500
sampled points. In Tab. 2, our approach outperforms previous methods also on
Relative Rotation and Translation Errors. Besides the quantitative results, we
show qualitative results in 3DLoMatch benchmark in Fig. 6.

3DMatch. We additionally report numbes on 3DMatch benchmark, where the
overlap between two frames is at least 30%. Compared to 3DLoMatch, 3DMatch
is easier and saturated. In Tab. 1, our proposed method outperforms our baseline
Predator in both RR and FMR in most cases. Our method surpasses all the other
methods, including the most recent CoFiNet, except for 5000 sampled points in
FMR and 1000 sampled points in RR, where we achieve the second best number.
In Tab. 2, our method also achieves SOTA results on Relative Rotation Error
and Relative Translation Error.
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Ours: PCR-CG Ground TruthPredator CoFiNet

Fig. 5: Qualitative Comparisons on 3DLoMatch. With the help of our proposed
2D-3D projection module, PCR-CG outperforms SOTA methods, such as our
baseline Predator.

4.1 Ablation Study

In this section, we ablate the different designs of projecting 2D to 3D for point
cloud registration task. We prove that our design of explicitly leveraging the color
signals achieves the best result. Furthermore, we show the significant influence of
the 2D pre-trained network and the frame selection on the final 3D registration
results. We conduct our ablation experiments in 3DLoMatch benchmark.
Frame Selection and Color Coverage In 3DLoMatch benchmark, each point
cloud is fused by 50 consecutive frames. To ensure 100% color coverage, 50 frames
must be all used for each point cloud. However, 50 times forward and backward
passes are time-consuming. To ensure the color coverage as well as efficiency, we
propose to use the first and last frame to back-project pixel features into 3D
geometry. The visuals in Fig. 4 demonstrate that there are approximately 30%
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Color ICP Ours: PCR-CG Ground TruthInput 

Fig. 6: Qualitative Comparisons on 3DLoMatch. Compared to ColorICP [30], our
method is more robust to initialization, especially in the case of large transfor-
mation and low overlaps such as in 3DLoMatch.

points that are not covered with one frame. With two views, most points are
covered. With three views, it only slightly improves the color coverage. Quan-
titatively, the registration recall confirms the observation. To provide in-depth
analysis of how much influence it has in terms of the number of views, we adjust
the numbers of images used in the training and test. In Tab. 7, we can clearly see
the signal that using more views leads to an increasing registration recall, which
proves that the proposed 2D-3D Projection Module contributes significantly to
the 3D registration task.

Deep Color Features vs. RGBs We compare our method to ColorICP [30] in
Tab. 3 to show the effectiveness of deep color features. Similar to ICP, ColorICP
also requires a good pose initialization. With original pose initialization that
has a large transformation, both ICP and ColorICP failed to align two point
clouds. With improved poses estimated by our method as initialization, both
show marginal improvements. This observation demonstrates the importance of
our method by embedding deep rather than shallow color features into geometry.
Similarly, we use SIFT estimated from RGB images to register their point clouds.
This result indicates the same conclusion and is showed in Tab. 5.

2D Pre-trained Networks PCR-CG lifts the 2D features into 3D. Therefore,
massive existing 2D pre-trained models can be used. In Tab. 4, we show the
influence of 2D representation on 3D results. We ablate on 2D models, such as
ImageNet [13] and Pri3D [21] pre-trained weights. With 2D pre-trained weights,
we achieve better 3D results compared to random initialization (Scratch). In
general, we notice the trend that our method can achieve better registration
recall numbers with more powerful 2D pre-trained models.



12 Y. Zhang et al.

3DMatch 3DLoMatch
RRE (◦) RTE (m) RRE (◦) RTE (m)

3DSN [16] 2.199 0.071 3.528 0.103
FCGF [10] 1.949 0.066 3.146 0.100
D3Feat [6] 2.161 0.067 3.361 0.103
Predator [23] 2.029 0.064 3.048 0.093
CoFiNet [46] 2.002 0.064 3.271 0.090

Ours – PCR-CG 1.993 0.061 3.002 0.087

Table 2: Relative Rotation Errors (RRE) and Relative Translation Errors (RTE) with
5,000 sampled points on 3DMatch and 3DLoMatch benchmarks. Our approach achieves
the best in RTE, and the second best in RRE.

Original Initial Pose Improved Initial Pose
3DMatch 3DLoMatch 3DMatch 3DLoMatch

ICP [36] 4.20 1.40 91.0 68.5
ColorICP [30] 4.90 1.50 91.4 68.8
PCR-CG 90.7 68.2 – –

Table 3: Registration Recall on 3DMatch and 3DLoMatch. Our method outper-
forms ICP and ColorICP on both benchmarks by large margins and more robust
to the bad pose initialization.

Window size. We ablate different window sizes for extracting deep color fea-
tures, and empirically find window size 11x11 achieves the best performance (see
Tab. 6).

Implicit vs. Explicit Projection Adding color to 3D is non-trival. As afore-
mentioned, we explore different ways of projecting 2D into 3D. Implicit one
projects all the pixel values/features onto 3D, while explicit one leverages the
2D overlap information to project features region by region. We experimentally
show that our design outperforms the rest. In Tab. 8, we show different combina-
tions of 2D pre-trained weights and projections. In general, projecting deep color
features such as Pri3D outperforms SIFT features and RGB values. In addition,
we show that explicit projection outperforms implicit projection.

Different Baselines We adopt the same backbone and pipeline as Predator.
However, our module is not specifically tied to Predator. Notably, our module
is agnostic to methods, and it is easy to be plugged into any frameworks oper-
ating on RGB-D data. In Tab. 9, we demonstrate that our module also brings
a significant improvement on CoFiNet baseline, i.e., +3.5% Registration Recall
at 5,000 sampled points.
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2D Backbone Registration Recall (%)
5000 2500 1000 500 250

PCR-CG Scratch 66.1 67.2 68.2 68.3 64.7
PCR-CG ImageNet 66.3 67.9 68.9 66.1 65.0
PCR-CG Pri3D 66.3 67.2 69.0 68.5 65.0

Table 4: Ablation study on different 2D pre-trained models. We observe a clear
correlation between 2D pre-trained weights and 3D results when explicitly lifting
deep color features. Using 2D pre-trained weights indicates higher registration
recalls. Two-view project is used. Note that all 2D models are pre-trained on
other data, thus showing a strong transfer ability in our method.

3DLoMatch 3DMatch

SIFT-DLT 0.4 0.9

Table 5: We utilize OpenCV SIFT-DLT [28] to calculate relative image pose and
corresponding registration recall on 3DLoMatch benchmark.

Window size Registration Recall (%)
5000 2500 1000 500 250

PCR-CG 3x3 63.1 64.0 65.1 64.6 60.7
PCR-CG 7x7 64.7 66.4 67.1 65.8 62.6
PCR-CG 11x11 66.3 67.2 69.0 68.5 65.0
PCR-CG 17x17 64.1 65.7 66.2 65.6 62.1

Table 6: Ablation study on window sizes in 3DLoMatch. We empirically found
11x11 window size shows the best performance. Two-view projection is used.
SuperGlue [37] is used to find correspondences and Pri3D [21] pre-trained model
is used for feature extraction.

Views Registration Recall (%)
5000 2500 1000 500 250

PCR-CG 1 64.4 67.0 66.6 66.4 64.3
PCR-CG 2 66.3 67.2 69.0 68.5 65.0
PCR-CG 3 66.7 67.9 69.1 68.7 65.1

Table 7: Ablation study on color coverage. We show an increasing registration
recall with more views used. SuperGlue [37] is used to find correspondences and
Pri3D [21] pre-trained model is used for feature extraction.



14 Y. Zhang et al.

Method Features Projection Registration Recall (%)
5000 2500 1000 500 250

PCR-CG RGB implicit 60.5 63.0 63.6 62.3 59.4
PCR-CG RGB explicit 60.4 63.1 63.5 62.8 59.9
PCR-CG SIFT implicit 63.1 65.1 65.5 64.9 61.4
PCR-CG SIFT explicit 64.8 67.0 67.1 66.5 63.9

PCR-CG SuperGlue explicit 64.0 65.0 65.0 65.0 60.8
PCR-CG ImageNet implicit 63.2 65.4 65.7 64.9 61.1
PCR-CG ImageNet explicit 66.3 67.9 68.9 66.1 65.0
PCR-CG Pri3D implicit 63.4 65.4 66.0 65.2 61.4
PCR-CG Pri3D explicit 66.3 67.2 69.0 68.5 65.0

Table 8: Ablation study on projections. RGB means simply appending RGB col-
ors to point cloud. SIFT refers to projecting SIFT features onto points. Pri3D
uses pre-trained weights to extract per-pixel features and projects them onto
points. Similarly, SuperGlue/ImageNet refers to projecting SuperGlue/ImageNet
pre-trained features. We show projecting deep color features outperforms SIFT
and RGB values with the same projection. Implicit manner projects features
of every pixel onto 3D, while explicit one projects features based on correspon-
dences estimated by SuperGlue. We demonstrate the explicit projection sur-
passes the implicit one. Two-view projection is used in the experiments.

Registration Recall (%)
Baseline Method 5000 2500 1000 500 250

CoFiNet 67.5 66.2 64.2 63.1 61.0
CoFiNet (re-train) 64.4 64.2 63.1 62.1 59.8
CoFiNet + PCR-CG 67.9 67.0 65.4 64.2 62.2

Table 9: Registration Recall based on CoFiNet on 3DLoMatch benchmark. We
can notice a clear gap of plugging in our module compared to CoFiNet baseline.
In this ablation experiment, our implementation is built upon the officially re-
leased code of CoFiNet. Thus, we re-train the official released code for a fair com-
parison. Pri3D pre-trained model and two-view projection (explicit) are used.

5 Conclusion

In this work, we correlate color and geometry for point cloud registration. To
fully leverage RGB-D data, we propose a novel 2D-3D projection module to
explicitly lift 2D features into 3D. Our module enables the usage of massive
existing 2D pre-trained networks in 3D registration tasks. We hope our research
can inspire the community to pay more attention on joint learning with color
and geometry on various computer vision applications.
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