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Abstract. Knowledge distillation (KD) is a well-known model compres-
sion strategy to improve models’ performance with fewer parameters.
However, recent KD approaches for object detection have faced two lim-
itations. First, they distill nearby foreground regions, ignoring potentially
useful background information. Second, they only consider global con-
texts, thereby the student model can hardly learn local details from the
teacher model. To overcome such challenging issues, we propose a novel
knowledge distillation method, GLAMD, distilling both global and lo-
cal knowledge from the teacher. We divide the feature maps into several
patches and apply an attention mechanism for both the entire feature
area and each patch to extract the global context as well as local details
simultaneously. Our method outperforms the state-of-the-art methods
with 40.8 AP on COCO2017 dataset, which is 3.4 AP higher than the
student model (ResNet50 based Faster R-CNN) and 0.7 AP higher than
the previous global attention-based distillation method.
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1 Introduction

Recent advancements in deep convolutional neural networks have achieved
remarkable success in various applications, especially for visual tasks such as
image classification [29, 11, 34] and object detection [27, 17, 18, 31, 24–26, 2, 10].
With their high performance, current deep-learning-based methods have been in-
tegrated and deployed for a wide range of real-world applications such as CCTV
surveillance, autonomous driving, and unmanned store. Although recent deep
learning models have demonstrated promising results, deploying deep-learning-
based applications on mobile or edge devices is still challenging. This is because
of limited computing resources on devices. To address this issue, model com-
pression techniques such as weight pruning [9, 15], model quantization [14], and
Knowledge Distillation (KD) [13] have been introduced.

In particular, KD is one of the most promising methods for reducing the pa-
rameters of deep Convolutional Neural Networks (CNN) models while effectively
achieving high performance. The KD method is formalized by Hinton et al. [13]
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Fig. 1. Visualization of the attention masks generated by (b) Zhang et al. [36], and
(c) GLAMD (Ours). Zhang et al. [36] focus only on a single small region, ignoring the
other important regions. On the other hand, our attention mask successfully represents
the other important local regions (people, bikes, etc.).

which uses the prediction logits of a large and cumbersome teacher model to
train a lightweight student model. Hence, the soft labels from the teacher model
can help the student model to mimic the teacher model’s decision, producing im-
proved performance with the small number of parameters in the student model.

However, most distillation methods [28, 30, 13, 32, 22] developed for classifi-
cation are not suitable for object detection tasks because of the class imbalance
problem in object detection and the absence of localization knowledge in the
previous KD methods. For instance, hint learning [28] is proposed to distill the
teacher model’s intermediate feature maps, however it does not transfer the
teacher’s classification and localization information of bounding boxes. To solve
this issue, Chen et al. [3] introduce a method of distilling feature, classification,
and localization information for object detectors. Nevertheless, the method in [3]
still does not effectively distill the teacher’s information due to the imbalance be-
tween foreground and background. To reduce overwhelmingly large background
data and further distill only from the informative foreground regions, Wang et
al. [33] propose the mask-based feature distillation method that filters out the
background regions based on ground truth. This method still has the problem of
providing uniform weights to target regions regardless of the importance. Hence
Zhang et al. [36] propose to apply an attention mechanism on a global feature
map to generate a mask with soft weights, where the mask allows to deliver
knowledge from the selective regions with high importance.

However, we find that considering only global feature contexts can lose im-
portant knowledge in the teacher’s features because of the following two major
drawbacks. First, they mainly consider the foreground regions while hardly pro-
viding attention to background regions. Ignoring the background area is not
ideal because there can be valuable knowledge in the background for object
detection [8]. Therefore, the key enhancement for improving distillation perfor-
mance in object detection tasks is carefully selecting informative regions from
both background and foreground, effectively balancing and leveraging all infor-
mation from them. Second, since the global mask-based methods only focus on a
few global contexts of the entire features, some important local details that are
evenly distributed across the entire regions can be ignored. For example, Zhang
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et al. [36] apply the softmax function on the global area to generate a mask that
provides substantial weights to a single foreground object and barely provides
attention to the other objects and background regions, as shown in Figure 1 (b).

To overcome the aforementioned limitations, we propose GLAMD, Global
and Local Attention Mask Distillation for object detector, a novel patch-based
attention mechanism that considers the both global contexts and local details
of the teacher’s features. GLAMD creates global and local attention masks by
applying an attention mechanism to global features and local features divided
by patches. The generated mask is then applied to the intermediate features,
classification output, and regression output to distill the teacher’s knowledge
more efficiently.

Figure 1 illustrates the attention masks generated by the previous global at-
tention method [36] and our patch-based attention method. Compared to the
global attention mask that focuses only on one person in Figure 1 (b), the local-
patch mask generated by our method in Figure 1 (c) covers other informative
objects such as people and a bike. Since the mask is generated by applying an
attention mechanism at the both global and local levels, we call the proposed
mask Global and Local Attention Mask (GLAM) in this work. With the pro-
posed GLAM, our method jointly considers the detailed information from the
background and foreground. As a result, ResNet50 based Faster R-CNN with
GLAMD achieves 40.8 AP on COCO2017 dataset [19], which is a 3.4 AP im-
provement over the baseline and 0.7 AP higher than the previous global attention
mask method [36]. Our main contributions are summarized as follows: (1) we
propose an attention-based distillation method that effectively incorporates a
local perspective to overcome the limitation of the global attention mask that
focuses on small areas of the image; and (2) we present quantitative and quali-
tative results and ablation studies of our distillation method on various object
detection models, including two-stage, one-stage, and anchor-free detectors in
the COCO dataset, achieving the state-of-the-art performance.

2 Related Work

2.1 Object Detection

Recently, object detection models have been developed as two-stage detec-
tors [27, 2, 10] as well as one-stage detectors [25, 26, 18, 16]. First, two-stage de-
tectors, such as Faster-RCNN [27], utilize the region proposal network (RPN)
and refinement procedure of bounding boxes. While two-stage detectors retain
a high detection accuracy, their computational complexity precludes them from
being used for real-time detection. In comparison to two-stage detectors, one-
stage detectors such as RetinaNet [18] have lower latency since they extract
bounding boxes straight from the feature map.

These anchor-based models achieve successful results in object detection by
using predefined anchors. However, predefined anchors bring a huge number of
outputs, resulting in substantial computational costs. Anchor-free models [31,
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37] have been proposed to further reduce the computational cost by directly
predicting critical bounding box information. As a result, anchor-free models
are lighter than anchor-based models. Nevertheless, the detection performance
of these models is proportional to their model size. Due to the models’ enor-
mous computational complexity, deploying detection models to mobile devices
with low computing and storage capacity has been challenging. Therefore, model
compression techniques such as weight pruning, model quantization, and knowl-
edge distillation have been proposed to address such issues.

2.2 Knowledge Distillation

KD is a compression method for enhancing the small student model per-
formance by using output from the large teacher model. As a result, extract-
ing useful information from the teacher in the distillation process has become
critical. In general, there are three different distillation approaches: response-
based [13], feature-based [28, 1, 35, 12], and relation-based [32, 20, 30, 22]. The
response-based distillation by Hinton et al. [13] selects the teacher’s softmax
logits and teaches the student by transferring the dark knowledge of the teacher.
The feature-based distillation by Romero et al. [28] attempts to improve the per-
formance of the student network by matching the teacher’s intermediate features
to the student’s features. The relation-based distillation by Park et al. [22] uses
information from several sample images in a mini-batch to calculate distance
and angle relationships among the features.

However, there is still an issue with applying the aforementioned distilla-
tion approaches to object detection models since each local region contributes
differently to student models’ training. To address this issue, previous research
employs a selective distillation method focusing on training-relevant local re-
gions by applying masks. Wang et al. [33] focus on the area of the anchor boxes
with a larger IoU with ground-truth than the flexible thresholds. Dai et al. [5]
propose a distillation mask focusing on discriminative instances by calculating
differences between the outputs of the teacher and the student. On the other
hand, Zhang et al. [36] design a soft mask by extracting intermediate feature at-
tention that focuses on the backbone network’s concentrated regions. However,
as networks often provide overwhelmingly large attention weights to a small
region, the existing global softmax attention masks tend to neglect other criti-
cal regions. Therefore, we propose generating an attention mask for each local
patch, which can focus on other significant regions that contain local knowledge
to further improve the performance.

2.3 Local Patch Mechanism

Recently, local patches-based methods are widely employed in various tasks,
such as image classification [7, 21] and object detection [6]. Dosovitskiy et al. [7]
propose a transformer-based image classification model, namely ViT, which di-
vides a single input image into several fixed-sized local patches and feeds them
into the transformer module. Also, Liu et al. [21] design a hierarchical network
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Fig. 2. The overall architecture of the proposed GLAMD. Local features are created by
dividing the global features, which are the network’s output with fixed-size patches. We
then generate attention masks by taking average and the softmax function in channel
and spatial directions. The proposed GLAM is generated by combining masks of the
teacher and student. Finally, GLAM is applied in distillation losses.

with multiple stages that divides a local window into numerous sub-patches to
calculate its attention. Their approach captures the interactions between the lo-
cal windows by shifting the sub-patches over the network. Ding et al. [6] propose
an approach to divide low-level features into local patches and then apply patch-
wise channel attention to easily detect small objects that have been difficult to
find in a global image. These approaches above effectively employ local patches
from the input images, improving the overall network performance by recogniz-
ing local regions where the global context can hardly represent. Therefore, to
overcome the limitation of the previous global mask-based distillation methods,
we propose a novel mask-based distillation with local patches, which effectively
distills both global and local knowledge.

3 Methods

Previous research [36] selectively distills features by applying global atten-
tion masks. However, [36] tends to distill only a small feature region because
the global attention mask highlights a single spot, ignoring other multiple local
details. To address this issue, we propose a novel mask that reflects the global
and local characteristics of the features. It also can be used for feature and head
distillation, as shown in Figure 2.
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3.1 Global and Local Attention Mask (GLAM)

In this section, we describe the global and local attention masks (GLAM), a
core component of the proposed GLAMD. The attention methods used in GLAM
are channel and spatial attention methods denoted as Mc and Ms, respectively.
To obtain the channel attention masks, the spatial-wise average of the absolute
feature elements |xi,j | is used in a softmax operation in the channel dimension
as follows:

Mc(x) = HW · σ

(
1

HW ·
∑H

i=1

∑W
j=1 (|xi,j |)

τ

)
, (1)

where τ and σ(·) indicate a temperature parameter and a softmax operation,
respectively, and H and W are the height and width of the input feature, re-
spectively. Similarly, to obtain the spatial attention masks, the channel-wise
average of the absolute feature elements |xk| is used in a softmax operation in
the width and height dimensions as follows:

Ms(x) = C · σ

(
1
C ·
∑C

k=1 (|xk|)
τ

)
, (2)

where C is the channel of the input feature.
To generate our proposed GLAM which considers local and global perspec-

tives, we split each output feature of Feature Pyramid Network (FPN) into
N local features fn ∈ Rp×p×C , where p is the predetermined patch size and
n ∈ {1, 2, ..., N}. Then, the local channel mask Lc and local spatial mask Ls are
formulated as follows:

Lc,n =Mc(f
T
n ) +Mc(f

S
n ), Lc = ψ (Lc,1, Lc,2, ..., Lc,N ) , (3)

Ls,n =Ms(f
T
n ) +Ms(f

S
n ), Ls = ψ (Ls,1, Ls,2, ..., Ls,N ) , (4)

where T and S indicate the teacher and student, respectively, and ψ denotes the
concatenation operation. Similarly, given a global feature F ∈ RH×W×C , the
global channel mask Gc and global spatial mask Gs are computed as follows:

Gc =Mc(F
T ) +Mc(F

S), Gs =Ms(F
T ) +Ms(F

S). (5)

By merging the local and global masks, our final channel and spatial attention
masks, denoted as Tc and Ts, respectively, are constructed as follows:

Tc =
1

2
· (Lc +Gc) , Ts =

1

2
· (Ls +Gs) . (6)

3.2 Feature Distillation

Typically, the teacher’s features are more informative than the student’s fea-
tures. Therefore, we distill the intermediate features extracted from the FPN to



GLAMD 7

increase the student’s performance. The feature in each stage is multiplied with
the corresponding channel and spatial attention masks to selectively distill the
area of interest. That is, our feature distillation loss is defined as follows:

Lfeat =

L∑
l=1

 C∑
k=1

H∑
i=1

W∑
j=1

(
F T
lkij − ϕadapt(F

S
lkij)

)2 · Ts,l · Tc,l
 1

2

, (7)

where L is the number of FPN stages and the function ϕadapt is the 1 × 1
convolutional adaptation layer that matches the student’s feature size to that of
the teacher’s feature. And, Ts,l and Tc,l mean spatial and channel masks of the
l-th stage, respectively.

In addition, we distill the attention features to encourage the student in
producing more effective GLAM. Hence, the extraction process of the channel
and spatial attention feature can be formulated as Ac(x) = 1

C ·
∑C

k=1 xk and

As(x) =
1

HW ·
∑H

i=1

∑W
j=1 xij . Then, the channel attention loss is calculated by

distilling both global and local channel attention features in our work. In partic-
ular, global and local spatial attention features are considered to be equivalent,
as local features are formed by dividing global features into the spatial domain.
As a result, in contrast to channel attention loss, spatial attention loss utilizes
only global spatial attention features. Therefore, our proposed channel attention
loss Lcat and spatial attention loss Lsat can be expressed as follows:

Lcat =
1

2
·

(∥∥Ac(F
S)−Ac(F

T )
∥∥
2
+

1

N
·

N∑
n=1

∥∥Ac(f
S
n )−Ac(f

T
n )
∥∥
2

)
, (8)

Lsat =
∥∥As(F

S)−As(F
T )
∥∥
2
. (9)

Finally, the overall feature attention loss is formulated by the sum of the channel
and spatial attention losses, as follows:

Lat = Lcat + Lsat. (10)

3.3 Head Distillation

The response-based distillation encourages the student’s outputs to mimic
the teacher’s. However, due to the imbalance between the foreground and back-
ground in object detection tasks, directly distilling the teacher’s head outputs
can cause a detrimental effect on the student’s performance. Therefore, in this
work, we apply spatial attention masks while performing the response-based
distillation. Especially, we use the spatial attention masks from the same FPN
stage in Eq. 6 to conduct the masked head distillation. The classification head
loss Lcls−head can be defined as follows:

Lcls−head =

L∑
l=1

C∑
k=1

H∑
i=1

W∑
j=1

LBCE

(
zSlkij , z

T
lkij

)
· Ts,l, (11)
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where zS and zT represent the outputs of the student and the teacher classifi-
cation head, respectively, and LBCE represents the binary-cross-entropy loss.

According to Chen et al. [3], certain unbounded outputs of the teacher can
provide incorrect guidance to the student model. To avoid the aforementioned
issue, we distill the localization head using IoU loss, one of the bounded loss
functions. For the localization head distillation, we use IoU loss to formulate the
localization head loss as follows:

Lloc−head =

L∑
l=1

C∑
k=1

H∑
i=1

W∑
j=1

LIoU

(
rSlkij , r

T
lkij

)
· Ts,l, (12)

where r is the localization head output.

3.4 Overall Loss Function

We form appropriate distillation losses using the outputs of the modules in
the detector and construct an overall loss by taking weighted sum with the stan-
dard classification and localization losses for the object detection task, denoted
as Ltask. Our overall loss is defined as follows:

L = Ltask + αLfeat + βLat + γ(Lcls−head + Lloc−head), (13)

where α, β, and γ are the balancing hyper-parameters with the distillation loss
and the task loss.

4 Experiment

4.1 Experiments Settings

To demonstrate the effectiveness of our method, we evaluate our method on
various object detection models and compare the results with other KD meth-
ods [28, 38, 36, 33]. All experiments are implemented using the mmdetection li-
brary [4] with PyTorch framework [23] on the COCO dataset [19]. We train our
model with 120k training images and test with 5k validation images from the
COCO dataset. All the performances are evaluated in average precision (AP).
We use 4 RTX3090 GPUs during training and use the batch size of 16.

For all experiments, student models are trained under 1× scheduler, the
default setting of the mmdetection, to train 12 epochs on the COCO dataset.
We start training with a warm-up strategy during the first 2,000 iterations and
perform a learning rate decay, which divides the learning rate by 10 at the 8-th
and 11-th epochs. We use the SGD optimizer to train the detection model, and
set the learning rate to 0.02 in Faster R-CNN and 0.01 in the rest of the models.
Also, the weight decay and momentum are set to 1e-4 and 0.9, respectively. We
set the hyper-parameters in Eq. 13 to {α = 4×10−4, β = 2×10−2, γ = 1×10−1,
τ = 1× 10−1} for single-stage detectors and {α = 7× 10−5, β = 4× 10−3, γ =
1× 10−1, τ = 5× 10−1} for two-stage detectors.
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Table 1. The generalization ability of our GLAMD in various object detectors.

Method Scheduler AP AP50 AP75 APS APM APL

Faster-ResNet50 (Student) 1× 37.4 58.1 40.4 21.2 41.0 48.1
Faster-ResNext101 (Teacher) 3× 43.1 63.6 47.2 26.5 46.9 56.0
GLAMD (Ours) 1× 40.8 61.4 44.3 23.2 45.0 53.2

Cascade-ResNet50 (Student) 1× 40.3 58.6 44.0 22.5 43.8 52.9
Cascade-ResNext101 (Teacher) 3× 44.5 63.2 48.5 25.5 48.1 58.4
GLAMD (Ours) 1× 43.0 61.5 46.8 24.1 47.3 56.8

Mask-ResNet50 (Student) 1× 38.2 58.8 41.4 21.9 40.9 49.5
Mask-ResNext101 (Teacher) 2× 42.7 62.9 47.1 23.8 46.5 56.7
GLAMD (Ours) 1× 40.2 61.1 43.7 23.0 44.3 52.6

RetinaNet-ResNet50 (Student) 1× 36.5 55.4 39.1 20.4 40.3 48.1
RetinaNet-ResNext101 (Teacher) 3× 41.6 61.4 44.3 23.9 45.5 54.5
GLAMD (Ours) 1× 40.0 59.5 42.5 22.8 44.0 53.4

GFL-ResNet50 (Student) 1× 40.2 58.4 43.3 23.3 44.0 52.2
GFL-ResNet101 (Teacher) 2× 44.9 63.1 49.0 28.0 49.1 57.2
GLAMD (Ours) 1× 43.0 61.0 46.5 26.4 47.4 55.2

ATSS-ResNet50 (Student) 1× 39.4 57.6 42.8 23.6 42.9 50.3
ATSS-ResNet101 (Teacher) 1× 41.5 59.9 45.2 24.2 45.9 53.3
GLAMD (Ours) 1× 41.0 59.1 44.3 23.8 45.1 52.9

FCOS-ResNet50 (Student) 1× 36.6 56.0 38.8 21.0 40.6 47.0
FCOS-ResNet101 (Teacher) 1× 39.1 58.3 42.1 22.7 43.3 50.3
GLAMD (Ours) 1× 38.6 58.1 41.2 22.8 42.5 49.3

4.2 Results on Different Detection Frameworks

We evaluate the generalization ability of our proposed GLAMD on multi-
ple detection architectures, including two-stage [27, 2, 10], one-stage [18, 16], and
anchor-free [31, 37] detectors. For all the detectors, we use ResNext101 [34] or
ResNet101 [11] as backbones of teachers and ResNet50 as backbones of students,
respectively. As shown in Table 1, our proposed method achieves significant gains
in terms of AP on all types of detection architectures. On average, our method
obtains 3.2 and 2.7 AP boosts, outperforming the baseline one-stage and two-
stage detectors, respectively. For anchor-free detectors (ATSS and FCOS), our
method obtains APs of 41.0 and 38.6 that are comparable to the teacher models.
Such results demonstrate that our method is effective in various detectors.

4.3 Comparison with Other KD Methods

To compare the results of our method with other KD methods, we evaluate
our method and recent KD methods on both one-stage (RetinaNet [18]) and two-
stage detectors (Faster R-CNN [27] and Cascade R-CNN [2]). The comparison
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Table 2. Comparison with various object detection KD methods.

Method Scheduler AP AP50 AP75 APS APM APL

RetinaNet-ResNet50 (Student) 1× 36.5 55.4 39.1 20.4 40.3 48.1
RetinaNet-ResNext101 (Teacher) 3× 41.6 61.4 44.3 23.9 45.5 54.5
Hint learning [28] 1× 37.1 56.5 39.2 21.4 40.7 48.8
Wang et al. [33] 1× 38.4 57.5 41.1 20.8 42.0 51.9
Zhang et al. [36] 1× 39.0 58.1 41.8 22.3 42.9 51.7
FRS [38] 1× 39.3 58.7 41.9 21.4 43.1 52.3
GLAMD (Ours) 1× 40.0 59.5 42.5 22.8 44.0 53.4

Faster-ResNet50 (Student) 1× 37.4 58.1 40.4 21.2 41.0 48.1
Faster-ResNext101 (Teacher) 3× 43.1 63.6 47.2 26.5 46.9 56.0
Hint learning [28] 1× 38.7 59.7 41.8 23.1 42.0 50.9
Wang et al. [33] 1× 39.5 59.9 43.2 21.7 43.4 53.2
Zhang et al. [36] 1× 40.1 60.8 43.4 22.9 44.1 53.1
FRS [38] 1× 40.3 61.8 43.9 23.3 44.3 52.4
GLAMD (Ours) 1× 40.8 61.4 44.3 23.2 45.0 53.2

Cascade-ResNet50 (Student) 1× 40.3 58.6 44.0 22.5 43.8 52.9
Cascade-ResNext101 (Teacher) 3× 44.5 63.2 48.5 25.5 48.1 58.4
Hint learning [28] 1× 40.6 59.4 44.4 22.9 44.1 53.8
Wang et al. [33] 1× 41.7 60.6 45.6 23.3 45.2 55.9
Zhang et al. [36] 1× 42.4 60.9 46.2 23.4 46.2 56.1
FRS [38] 1× 42.7 61.3 46.7 24.4 46.3 56.2
GLAMD (Ours) 1× 43.0 61.5 46.8 24.1 47.3 56.8

results with other KD methods are provided in Table 2. As shown in Table 2,
our approach outperforms all previous KD methods in distillation performance.
In particular, the results achieved by ours are 1.0, 0.7, and 0.6 AP higher than
the results from the global attention-based method [36], respectively. Also, our
method outperforms the recent distillation method FRS [38]. It clearly shows
that local knowledge extracted by our method effectively enhances the overall
distillation performance.

4.4 Ablation Study

We conduct four different ablation studies to further explore the properties
of our proposed method.

Modules in GLAMD. To verify the effect of each module in Eq. 13, we
evaluate the detection performance with and without each of them in GLAMD.
The result of the ablation study is presented in Table 3. Our method achieves
0.2 and 0.1 AP improvements on the classification head and regression head, re-
spectively. When we conduct distillation from both classification and regression
heads together, our method achieves 0.5 AP improvement. These results show
that each part of the distillation loss in our method contributes to the perfor-
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Table 3. Ablation study for the contribution of each module in GLAMD.“Feat”, “Cls
Head”, and “Loc Head” indicate each distillation loss used in our model. “GLAM”
indicates applying our mask (GLAM) to distillation losses.

Feat GLAM Cls Head Loc Head AP AP50 AP75 APS APM APL

✗ ✗ ✗ ✗ 36.5 55.4 39.1 20.4 40.3 48.1
✓ ✗ ✗ ✗ 37.1 56.5 39.2 21.4 40.7 48.8
✓ ✓ ✗ ✗ 39.5 58.9 42.0 23.2 43.5 52.0
✓ ✓ ✓ ✗ 39.7 59.2 42.4 23.5 44.1 52.5
✓ ✓ ✗ ✓ 39.6 58.9 42.3 22.1 43.6 51.9
✓ ✓ ✓ ✓ 40.0 59.5 42.5 22.8 44.0 53.4

Table 4. Experimental results for comparing performance change according to different
types of attention masks.

Local Global AP APS APM APL

✗ ✗ 38.7 22.7 42.5 51.8
✓ ✗ 39.8 23.3 44.0 53.0
✗ ✓ 38.9 22.4 42.8 52.0
✓ ✓ 40.0 22.8 44.0 53.4

mance gain, and fully utilizing our losses in the form of Eq. 12 can improve the
final AP performance in a complementary manner.

Effectiveness of Local Attention Mask Distillation. Due to the biased
distribution of the global attention mask, KD with the global feature attention
tends to distill knowledge from a single large object. On the other hand, we
hypothesize that the local feature attention can extract knowledge from small
objects as well. To analyze the effectiveness of each attention mask, we perform
distillation with local or global attention masks individually. As shown in Ta-
ble 4, local attention achieves higher AP than global attention, especially with
significantly improved AP for small objects. Although the global attention result
is worse than the local attention, it is noteworthy to observe that detection per-
formance further increases by using global attention and local attention together.
These results indicate that the local attention mask proposed by our GLAMD is
complementary to the global attention mask to improve the performance further.

Effect of Local Patch Size. The primary parameter affecting local at-
tention is the patch size. To evaluate the influence of the patch size, we alter
the patch size in [3, 5, 7, 9, 11]. As shown in Table 5, the performance in AP
tends to increase when the patch size decreases until the patch size of 7. This is
because attention masks generated from small patches are suitable for represent-
ing fine-grained features, yet extremely tiny patches are incapable of capturing
the underlying local structure. More efficient theoretical ways to determine the
optimal p can be further investigated as future work.
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Table 5. Performance under different set-
tings of the patch size p.

p 3 5 7 9 11

AP 39.7 39.7 40.0 39.8 39.7

Table 6. Results of three different loss
functions used in Lloc−head.

Loss L1 MSE Smooth-L1 IoU

AP 39.9 39.8 39.8 40.0

Comparison of Different Localization Head Distillation Loss. We
also study the impact of different types of loss functions used in Eq. 12. To
verify the effectiveness of the bounded regression loss in Eq. 12, We compare
the distillation performance of various loss functions including IoU loss, L1 loss,
MSE loss, and smooth-L1 loss. As shown in Table 6, IoU loss produces the best
result among the other losses.

4.5 Qualitative Analysis and Visualizations

The visualizations of the global attention mask generated by [36] and our
mask generated by GLAMD are shown in Figure 3. We observe that our mask
encompasses various critical regions that the global attention mask overlooks.
This property of our mask results in two significant enhancements in terms of
mask distribution: (1) It captures the fine-grained details from various objects.
For instance, our mask pays attention to a kid in Figure 3 (a) and another
polar bear in Figure 3 (b) which are considered as the background in global
attention; (2) It extracts structural information such as edges and lines from
objects. In Figure 3 (e), our mask provides weight to the edges of the tent and
car, demonstrating that it extracts crucial clues from the local objects for solving
the challenging object detection tasks.

Next, Figure 4 qualitatively compares the results produced by a model with
our method and a baseline student model without KD. The results show that our
method improves the detection performance by taking advantage of GLAM. As
shown in Figure 4 (a) and (c), small objects neglected by the baseline model are
detected after applying GLAMD, demonstrating that it is effective at enhanc-
ing the student model’s capability to extract local information. Additionally,
our method strengthens the student’s ability to distinguish occluded objects by
distilling knowledge about the object’s edge, shown in Figure 4 (b) and (d).

4.6 Feature Similarity

We visualize patch-wise distance maps in Figure 5. For the visualization, we
calculate the L1 distance between the features of the teacher and the student.
Next, we average the distance values in each patch to generate the distance
maps. As shown in Figure 5, the distance is much lower in every patch with
GLAMD than with a global attention mask method. This means that our method
encourages students to mimic the teacher’s feature map more closely across all
local regions owing to the local attention masks.
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Fig. 3. Visualization of masks on COCO2017 samples. The original images are shown
in the first column. Global attention masks [36] and our masks are shown in the second
and the third columns, respectively.

Fig. 4. Qualitative analysis on COCO2017. The results are produced by a model with-
out KD (baseline) and a model distilled with GLAMD. The orange boxes in (a), (c),
and (d) indicate undetected objects of the baseline detector, and the box in (b) shows
a wrongly detected object.
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Fig. 5. Visualizations of the L1 distances between the local features of teacher and
student. The distance maps in the top row are produced by a model trained with a
global attention mask method and the distance maps in the bottom row are produced
by a model trained with GLAMD.

5 Conclusions

In this paper, we propose GLAMD, a novel mask-based KD method for ob-
ject detection that effectively applies global and local attention mechanisms to
extract local details and background knowledge. To obtain local details, we di-
vide the input features into several patches and apply attention mechanisms to
each patch. Our method enables the extraction of more useful background in-
formation as well as fine-grained details from a variety of objects, resulting in
much improved distillation performance. We demonstrate GLAMD’s effective-
ness with the various detection frameworks, outperforming other KD methods.
Additionally, we conduct an extensive ablation study and analysis, showing that
distilling local knowledge from various regions is crucial in object detection tasks.
We expect that our work provides a turning point of conventional KD methods
for object detection that focus exclusively on global knowledge to develop into
more effective approaches that consider local knowledge as well.
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