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The supplementary material provides:

– detailed configuration of the network architecture.
– comparison in terms of macro-averaged AUROC metric [3].
– running time analysis.
– visual results on UCSD Ped2 [11], CUHK Avenue [9] and ShanghaiTech

Campus (STC) [10].
– multi-label regression loss vs. multi-label classification loss for training.
– action recognition experiment on UCF-101 [14] using linear probing evalua-

tion.

1 Network Architecture

The detailed configuration of the network is presented in Table 1. The network
consists of a shared convolutional part and two independent heads. The shared
convolutional neural network (CNN) consists of 3D convolutions (conv) to ex-
tract spatio-temporal representations and 2D conv to aggregate spatial represen-
tations, while the two individual heads are fully connected (fc) layers. The shared
part consists of three 3D blocks and one 2D block. Each 3D block comprises two
3D convolutional layers with the filters of 3× 3× 3 and a 3D max-pooling layer.
Each convolutional layer is followed by an instance normalization (IN) layer [15],
a ReLU activation layer. We perform 3D max-pooling along the spatial dimen-
sion in the first two blocks while the last 3D max-pooling layer performs global
temporal pooling. The 2D block consists of a 2D convolutional layer, followed
by an IN layer, a ReLU activation layer, a 2D dropout layer, and a 2D max-
pooling layer. Both heads share the same configuration with two fc layers. We
employ IN layers in the network since spatial and temporal jigsaw puzzles are
instance-specific and independent of each other. Generally, we adopt the similar
architecture (expect for the normalization layer) with the “deep+wide” 3D CNN
in [2] for fair comparison.
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Table 1: The detailed network architecture. Global temporal pooling is denoted
by “:”. n2 and l denote the number of patches in space dimension and the number
of frames in time dimension, respectively.

3
D

3× 3× 3 conv 32
3× 3× 3 conv 32

1× 2× 2 max-pooling
3× 3× 3 conv 64
3× 3× 3 conv 64

1× 2× 2 max-pooling
3× 3× 3 conv 64
3× 3× 3 conv 64

: ×2× 2 max-pooling
2
D

3× 3 conv
dropout

2× 2 max-pooling

H
ea
d 512 fc 512 fc

(n2)2 fc l2 fc

2 Macro-averaged AUROC Comparison

We note that most of the existing works [1, 4, 7, 8, 16, 18] report the micro-
averaged AUROC by concatenating all frames in the dataset then computing
the score while some [2, 5] report macro-average AUROC by first computing
the AUROC for each video then averaging these scores. Note that we report
the micro-averaged AUROC in our main paper by default. Here, we also re-
port the macro-averaged AUROC in Table 2. Clearly, we also achieve the best
performance.

3 Running Time

All experiments are conducted on an NVIDIA RTX 2080 Ti GPU and an Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz. For object detection, the YOLOv3 model
[13] takes about 20 milliseconds (ms) per frame. In the anomaly detection phase,
our lightweight model infers the anomaly scores in 3 ms. With all components
considered, our method runs at 28 FPS with an average of 5 objects per frame
while the running speed of HF2-VAD is about 10 FPS. The run-time bottleneck
of our framework principally lies in object detection and spatio-temporal cube
construction.

4 Visual Results

We provide visual results on UCSD Ped2 [11], CUHK Avenue [9] and STC [10],
shown in Figure 1, Figure 2 and Figure 3, respectively. Clearly, the regularity
scores correlate strongly with the ground-truth temporal segments of the abnor-
mal events, indicating the effectiveness of our method.
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Table 2: Comparison with state-of-the-art methods on frame-level performance
in terms of macro-averaged AUROC (%). The best and second-best results are
bold and underlined, respectively. ∗ denotes the results taken from [3].

Year Method Ped2 Avenue STC

2018 Frame-Pred.∗ [7] 98.1 81.7 80.6

2019 CAE-SVM∗ [5] 97.8 90.4 84.9

2021 SS-MTL [2] 99.8 91.9 89.3

2022 Ours 99.9 93.0 90.6

(a) Test video 02 from UCSD Ped2. (b) Test video 07 from UCSD Ped2.

Fig. 1: Regularity score curves by our method on UCSD Ped2. The light red
shaded regions represent the ground-truth segments of abnormal events.

(a) Test video 16 from CUHK Avenue. (b) Test video 02 from CUHK Avenue.

Fig. 2: Regularity score curves by our method on CUHK Avenue. The light red
shaded regions represent the ground-truth segments of abnormal events.

5 Classification vs. Regression

We first convert each position label to one-hot format and then use mean square
error (MSE) to regress entries of the one-hot label for each frame/patch. We
obtain 83.9% on STC vs. 84.3% (ours), showing that multi-label formulation is
robust to different losses.
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(a) Test video 03 0031 from STC. (b) Test video 12 0149 from STC.

Fig. 3: Regularity score curves by our method on STC. The light red shaded
regions represent the ground-truth segments of abnormal events.

6 Action Recognition

Both action recognition and VAD require learning spatio-temporal features for
classification. But the features they require are different - VAD expects the
features sensitive to more subtle changes leading to higher discrimination, while
our pretext task also benefits action recognition (as shown by the preliminary
results under the fine-tuning protocol on UCF-101 [14] in Table 3).

Table 3: Results on UCF-101.
Method Accuracy

Shuffle & Learn [12] 50.2
OPN [6] 56.3

VCOP [17] 64.9
Ours 67.7
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