
Class-agnostic Object Detection with
Multi-modal Transformer

Muhammad Maaz1∗, Hanoona Rasheed1∗, Salman Khan1,2, Fahad Shahbaz
Khan1,3, Rao Muhammad Anwer1,4, and Ming-Hsuan Yang5,6,7

1Mohamed bin Zayed University of AI 2Australian National University
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Abstract. What constitutes an object? This has been a long-standing
question in computer vision. Towards this goal, numerous learning-free
and learning-based approaches have been developed to score objectness.
However, they generally do not scale well across new domains and novel
objects. In this paper, we advocate that existing methods lack a top-
down supervision signal governed by human-understandable semantics.
For the first time in literature, we demonstrate that Multi-modal Vision
Transformers (MViT) trained with aligned image-text pairs can effec-
tively bridge this gap. Our extensive experiments across various domains
and novel objects show the state-of-the-art performance of MViTs to lo-
calize generic objects in images. Based on the observation that existing
MViTs do not include multi-scale feature processing and usually require
longer training schedules, we develop an efficient MViT architecture us-
ing multi-scale deformable attention and late vision-language fusion. We
show the significance of MViT proposals in a diverse range of applications
including open-world object detection, salient and camouflage object de-
tection, supervised and self-supervised detection tasks. Further, MViTs
can adaptively generate proposals given a specific language query and
thus offer enhanced interactability. Code: https://git.io/J1HPY.
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1 Introduction

The recent years have witnessed significant advances in object detection (OD)
[42] based on developments of large-scale annotated datasets and carefully de-
signed deep learning models. Notably, efforts have been made to tackle more
difficult cases such as universal OD [67], long-tailed object distribution model-
ing [19], open-vocabulary [78] and open-world OD [28]. In contrast, little progress
has been made towards a seemingly simpler task of class-agnostic OD [1] in re-
cent years. In the era of fully trainable pipelines, class-agnostic OD is still often
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Fig. 1: We show that Multi-modal Vision Transformers (MViTs) excel at Class-
agnostic OD across multiple domains: natural images [14,40,17,18], satellite images

[72], sketches, cartoons and paintings [26] ( gray background ). The MViTs perform

well on diverse datasets (with many classes e.g., LVIS, Object365) using intuitive nat-
ural language text queries (e.g., all objects). Further, class-agnostic detectors (MViTs)

can be applied to several downstream applications ( pearl background ). In Open-world

OD [28], unknown pseudo-labels generated using MDETR [29] can improve novelty de-
tection. For unsupervised object localization, replacing Selective Search proposals [64]
in DETReg [3] pretraining with only top-30 MViT proposals leads to improved local-
ization. For Salient and Camouflaged OD, task specific text queries can help perform
competitively against fully supervised models without any task specific tuning. Overall,
MViTs achieve the state-of-the-art results on various downstream applications.

approached using typical bottom-up approaches such as Selective Search [64],
EdgeBox [84], DeepMask [49] and MCG [52].

Despite being an apparently simpler problem in terms of the two-way classi-
fication space, the class-agnostic OD task is indeed challenging from the repre-
sentation learning perspective. The main challenge is to model the vast diversity
of all valid object classes and delineate such a diverse group from the background
class which itself has vague semantic definition [2]. Our experiments indicate that
this intrinsic complexity of the task makes it difficult to design fully trainable
class-agnostic OD models that can work across domains and for novel unseen
objects. Although the bottom-up approaches offer proposals for generic objects,
they come at the cost of a prohibitively large number of candidate boxes, low-
precision, lack of semantic understanding and slow processing, making them less
scalable to generic operation in the wild. More recently, self-supervised learning
frameworks – based on both ViTs [3,11] and CNNs [74,73] – have focused on
promoting better localization of generic objects, however they still show modest
performance on class-agnostic OD [3]. Our intuition is that top-down supervisory



Class-agnostic Object Detection with Multi-modal Transformer 3

signals are necessary to resolve the ambiguous nature of class-agnostic OD task,
which is precisely what is missing from the aforementioned approaches.

In this paper, we bring out the capacity of recent Multi-modal Vision Trans-
formers (MViTs) to propose generic class-agnostic OD across different domains.
The high-level information provided by the language descriptions helps learn
fairly generalizable properties of universal object categories. In turn, the MViTs
perform exceptionally well compared to uni-modal object detectors trained for
generic object detection as well as the typical bottom-up object proposal gen-
eration schemes. Due to the multi-modal nature of these models, we design
language-driven queries to discover valid objects in a human-understandable
format that can be adapted to explore varied aspects of the object semantic
space. With the state-of-the-art performance, an ensuing question is to explore
the root cause of such generalization for the ‘concept of objects’ embedded in
MViTs. Through a series of systematic experiments, we find that it is the lan-
guage skeleton/structure (rather than the lexicon itself) that defines this strong
understanding of generic object definition within MViT models. As an interest-
ing example, when the MViT is trained without actual captions, but just the
bounding boxes corresponding to a natural language description, the model still
demonstrates strong class-agnostic OD generalization. These insights on the in-
teractive class-agnostic OD mechanism can be deployed in several downstream
tasks such as novel object discovery, saliency detection, self-supervised learning
and open-world detection. The main highlights of this work include:

– We demonstrate the state-of-the-art performance of pre-trained MViTs [29,20]
towards class-agnostic OD via a set of human-understandable natural lan-
guage queries. We also develop an efficient and flexible MViT model, Mul-
tiscale Attention ViT with Late fusion (MAVL), which performs better in
locating generic objects as compared to existing MViTs (Secs. 2 and 3).

– We benchmark generalization of MViT based OD models on diverse domains
e.g., natural images, sketches, cartoons, satellite images, paintings and show
their favorable performance compared to existing class-agnostic OD models
(bottom-up approaches, CNN and ViT based uni-modal pipelines) (Sec. 3).

– Our class-agnostic detectors can benefit various down-stream applications:
Open-world OD, Salient OD, Camouflaged OD and Self-supervised learning.
Furthermore, when these proposals are combined with RPN proposals in
two-stage detectors, it can lead to overall performance improvements due to
their rich top-down semantic understanding of the image content (Sec. 4).

– Through an extensive set of systematic experiments, we analyze the factors
that majorly contribute to the improved performance of MViTs (Sec. 5).

2 Multi-modal ViTs

In this work, we bring out the generalization capacity of Multi-modal ViTs
(MViT) to tackle generic OD. The capability of relating natural language with
visual features helps MViTs to generalize to novel concepts, achieving state-of-
the-art results on class-agnostic OD using human-understandable text queries
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Fig. 2: Architecture overview of MViTs used in this work – GPV-1 [20], MDETR [29]
and MAVL (ours). GPV-1 takes image along with a task description as input and
outputs relevant region boxes and text. MDETR uses soft token prediction and con-
trastive alignment in latent space for cross-conceptualization using aligned image-text
pairs. MAVL utilizes multi-scale image features with multi-scale deformable attention
module (MSDA), and uses late-fusion strategy for vision-language fusion.

(e.g., ‘all objects/entities’). Before a detailed analysis, we provide background
on MViTs and propose Multiscale Attention ViT with Late fusion (MAVL).

(a) GPV: Gupta et al. proposed GPV-I [20], a unified architecture for multi-task
learning, where the task is inferred from the text prompt. It takes an image and
a task description as input and outputs text with the corresponding bounding
boxes. This model uses pretrained BERT [12] to encode the text, concatenates
it with the region descriptors from DETR [5] and passes it to ViLBERT [44] co-
attention layers for cross-modal conceptualization. It predicts relevance scores
for each predicted bounding box indicating the importance of the region for the
prompted task. An output text decoder conditioned on the relevance scores is
used for better cross-modal understanding (Fig. 2 (a)). GPV is trained on data
from five different vision-language tasks.

(b) MDETR: Kamath et al. [29] proposed a modulated transformer trained to
detect objects in an image conditioned on a text query. In MDETR, visual and
text features are extracted from a convolutional backbone (e.g., ResNet-101 [23]
or EfficientNet [63]) and a language model (RoBERTa [43]) respectively. These
features are then concatenated and passed to the DETR [5] model for detection
(Fig. 2 (b)). MDETR uses soft token prediction and contrastive alignment in
latent space for addressing text-conditioned object detection. In soft token pre-
diction, a uniform probability distribution is predicted over all text tokens for
each detected object. In contrastive alignment, the embedded object queries from
decoder are aligned with the text representation from encoder. This multi-modal
alignment makes the object embeddings closer to the corresponding text embed-
dings in feature space. The model is pre-trained with 1.3M image-text pairs and
achieves the state-of-the-art results on various vision-language downstream tasks
including VQA, referring expression and phrase grounding.

(c) MAVL: We develop a new multimodal architecture called Multi-scale At-
tention ViT with Late fusion (MAVL) that improves the class-agnostic OD per-
formance of MDETR using multi-scale spatial context and deformable attention
making it efficient to train. Fig. 2 (c) shows our overall design. Below, we high-
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light the main features of MAVL:
−Multi-scale Deformable Attention (MSDA). MDETR [29] finds it challenging
to scale to high-resolution feature maps due to a fixed self-attention design. Fur-
ther, it operates on a specified spatial scale which can be sub-optimal for small
objects. Our design calculates attention at multiple scales to incorporate better
contextual information. However, multiple scales can increase the computational
cost, therefore we use Deformable Attention proposed in [83] that employs multi-
scale feature processing and dynamically attends to relevant pixel locations for
context aggregation. Specifically, it samples a small set of keys around a refer-
ence (query) image location. The sparse key sampling in MSDA achieves linear
complexity with respect to the size of the image feature maps.
−Late Multi-modal Fusion. MSDA module utilizes the spatial structure of an
image to sparsely sample keys for each query point. Following the MDETR strat-
egy of concatenating text embeddings with flattened features would destroy the
spatial structure of an image. Hence, we fuse text in MAVL model after the
images are processed through the Def-DETR encoder-decoder architecture us-
ing a late fusion mechanism. Specifically, the object query representations from
the deformable decoder are concatenated with the text embeddings, and passed
through a series of six transformer self-attention (SA) blocks. This design choice
is inspired by the recent vision-language fusion works [44,60,62,61]. Using the
training procedure of [5], the output head is applied after each SA block and the
total loss is calculated by adding all auxiliary losses. We note that no explicit
contrastive alignment of object query representation and encoded text is required
in our approach. Our experiments show fast convergence (only half iterations)
and competitive performance of MAVL against MDETR (Tables 1, 2).
−Implementation Details. Similar to MDETR [29], we train MAVL on approx.
1.3M aligned image-text pairs, using images from Flickr30k [51], MS-COCO
(2014) [40] and Visual Genome (VG) [32]. The corresponding annotations are
taken from Flickr entities, RefCOCO/+/g referring expression [30], VG regions
and GQA [25]. In the onward discussion, we refer to this dataset as Large-
scale Modulated Detection (LMDet)dataset. All MDETR and MAVL models are
trained with ImageNet-1K [55] pretrained ResNet-101 [23]. Our MAVL converges
in 20 epochs (MDETR requires 40 epochs) on LMDet using the same hyper-
parameters as in MDETR. See Appendix A.1 for more details.

3 Multi-modal ViTs as Generic Detectors

The class-agnostic OD seeks to differentiate between generic objects and back-
ground in images. This task involves learning the notion of objectness. Existing
approaches typically explore low-level visual cues (i.e. superpixels, edges, etc.)
or directly learn the mapping between images and generic object locations using
fully trainable pipelines learned with bounding box annotations [64,84,27,3]. We
note that these procedures lack high-level semantic information necessary to re-
late objects across diverse scenes to derive a comprehensive and general notion
of universal objects. In this work, We explore the class-agnostic OD capacity of
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Table 1: Class-agnostic OD results of MViTs in comparison with bottom-up ap-
proaches (row 3-5) and uni-modal detectors (row 6-8) trained to localize generic objects.
Bottom row shows gain of MAVL over the best uni-modal method. In general, MViTs
achieve state-of-the-art performance using intuitive text queries (details in Sec. 4.1).

Dataset → Pascal-VOC COCO KITTI Objects365 LVIS
Model ↓ AP50 R50 AP50 R50 AP50 R50 AP50 R50 AP50 R50

Edge Boxes 0.08 7.14 0.09 5.16 0.09 6.58 0.07 3.27 0.05 3.00
Selective Search 0.32 21.4 0.27 12.7 0.03 4.85 0.38 10.7 0.24 9.31
Deep Mask 5.92 40.4 2.16 19.2 1.33 15.5 1.31 14.5 0.51 8.17

Faster-RCNN 42.9 85.8 26.4 58.7 23.5 53.2 24.8 54.6 8.91 35.6
RetinaNet 43.2 86.6 24.6 59.1 30.4 57.6 24.3 54.8 8.57 35.7
Def-DETR 30.1 81.0 20.0 53.5 23.7 55.0 17.0 45.9 6.60 30.7

GPV-I 61.9 91.1 38.0 64.4 43.0 64.4 25.6 50.2 9.18 27.5
MDETR 66.0 90.1 40.7 62.2 46.7 67.2 30.4 54.0 10.7 32.8
MAVL (Ours) 68.6 91.3 43.6 65.0 48.2 63.5 33.2 57.9 11.7 37.0

+25.4 +4.7 +19.0 +5.9 +17.8 +5.9 +8.4 +3.1 +2.8 +1.3

MViTs trained using aligned image-text pairs (Sec. 2). We observe these models
can produce high quality object proposals by using intuitive text queries like ‘all
objects’ and ‘all entities’. This demonstrates their capability to relate natural
language with visual concepts to model generic objectness, enabling them to
discover novel categories and generalize across different domains while offering
human interaction with intelligible text queries.

3.1 Class-agnostic Object Detection

Settings: Table 1 shows the object proposal generation performance of MViTs
with the typical bottom-up approaches and the end-to-end supervised deep learn-
ing methods on five challenging natural image OD datasets (Pascal VOC [14],
MS COCO [40], KITTI [17], Objects365 [56] and LVIS [19]). The bottom-up
approaches considered for comparison include EdgeBoxes [84], Selective Search
[64] and DeepMask [49] while Faster-RCNN [54], RetinaNet [39] and Deformable-
DETR [83] are selected from the deep-learning based methods due to the state-
of-the-art performance in class-aware OD. The MViTs considered are GPV-I
[20] and MDETR [29] alongside our proposed MAVL (see Sec. 2 for details).

For fairness, all the uni-modal detectors considered for evaluation are trained
with ResNet-101 backbone using box-level supervision on LMDet dataset. Faster-
RCNN and RetinaNet follow the standard Detectron2 [70] training setting with
FPN at 1× schedule. The combined detections from the text queries in Ta-
ble 3 are used for evaluating MViTs (see Sec. 4.1 and Appendix A.2 for details).
Moreover, images used in the evaluation do not have any overlap with LMDet.
Results: We report both average precision (AP) and Recall at IoU threshold
of 0.5 using the top-50 boxes from each method. Overall, the detectors trained
in class-agnostic fashion perform reasonably well on all datasets, surpassing the
bottom-up methods by a large margin. Furthermore, the MViTs perform better
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Table 2: Class-agnostic OD performance of MViTs in comparison with RetinaNet
[39] on several out-of-domain datasets. MViTs show consistently good results on all
datasets. †Proposals on DOTA [72] are generated by multi-scale inference (see Sec. A.2).

Dataset → Kitchen Clipart Comic Watercolor DOTA†

Model ↓ AP50 R50 AP50 R50 AP50 R50 AP50 R50 AP50 R50

RetinaNet 35.3 89.5 27.0 90.0 33.1 86.1 47.8 91.9 0.72 15.6
GPV-1 24.5 84.8 35.1 86.1 42.3 83.6 50.3 89.5 0.55 9.33
MDETR 38.4 91.4 44.9 90.7 55.8 89.5 63.6 94.3 1.94 21.8
MAVL (Ours) 45.4 91.0 50.6 92.9 57.7 89.2 63.8 95.6 2.86 24.2

than the uni-modal approaches with the use of simple human understandable
natural language text queries. This performance shows MViTs’ strong under-
standing of language content obtained from the pretrained NLP model (BERT
[12], RoBERTa [43]) along with the aligned image-text pairs used in pretraining.

For MViTs, interestingly a relatively small number of boxes match the quality
achieved by a much larger proposal set from competing methods. Fig. 3a shows
the recall obtained by varying the number of top object proposals for all methods
on two datasets. MViTs achieve competitive recall with only top-10 proposals.

3.2 How well MViTs generalize?

Generalization to New Domains:We extend our analysis from natural image
datasets (Sec. 3.1) to rule out if MViT representations are biased towards natural
images, for which these models are originally trained on. To this end, we evaluate
on universal OD datasets [67] belonging to five different domains (Table 2). The
studied domains include indoor kitchen scenes [18], cartoon images, watercolor
drawings, clipart, comics [26] and satellite/aerial images (DOTA dataset) [72].
The experiments follow the same setting as in Sec. 3.1. These results indicate the
generalization capability of MViTs in comparison to the best proposal generation
methods earlier evaluated in Table 1 (RetinaNet trained for class-agnostic OD).
Generalization to Rare/Novel Classes: With the notion of objectness, hu-
mans are capable of identifying novel and rare objects, although they may not
recognize their specific category. Similarly, scalabiltiy to rare and novel classes
is a desired quality of an object detector. To analyze this, the class-agnostic OD
mechanism of MAVL is evaluated on rare categories from Open-Images [34] ver-
sus frequent categories and compared with Deformable DETR and Deep Mask
trained for class agnostic OD. Fig. 3b indicate state-of-the-art recall on rare
categories such as lynx, humidifier, and armadillo with as few as zero training
instance. Overall, we note the model generalizes well to rare/unseen categories.

4 Applications and Use-cases

The high-quality class-agnostic object proposals obtained from MViTs can be
helpful towards several downstream applications, as we demonstrate next.
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(a) (b)

Fig. 3: (a) Effect of using different number of top-ranked boxes on multiple class-
agnostic OD methods. The MViTs exhibits good recall even with only top-10 proposals.
(b) MAVL class-agnostic OD performance on rarely and frequently occurring categories
in LMDet. Rare categories are selected from Open Images [34]. The MAVL recall rates
(represented by the bars) are compared with those of Def-DETR [83] and DeepMask
[49] (represented by the lines). The numbers on top of the bars indicate the total
occurrences of the category in LMDet captions. The MViT achieves good recall even
for the classes with no or very few occurrences in the training dataset.

4.1 Enhanced Interactability

We have observed that MViTs can generate high quality object proposals with in-
tuitive human understandable queries such as ‘all objects’. This motivates us to
explore the language semantic space of such models to construct a set of queries

Table 3: Using different intuitive text queries
with MAVL. Combining detections from multiple
queries captures varying aspects of objectness.

Dataset → Pascal-VOC COCO KITTI
Text Query ↓ AP50 R50 AP50 R50 AP50 R50

all objects 51.3 85.5 33.3 58.4 40.2 64.0
all entities 65.2 88.4 34.6 54.6 41.9 59.5
all visible entities & objects 63.3 89.0 37.9 61.6 42.0 63.0
all obscure entities & objects 59.5 86.6 35.2 59.1 42.4 63.5
all small objects 40.0 83.9 28.9 58.9 40.4 65.2

combined detections (CD) 63.7 91.0 42.0 65.0 48.2 63.5
CD w/o ‘all small objects’ 68.6 91.3 43.6 65.0 45.8 61.6

that can well capture the
generic concept of objectness.
We filter words from captions
in LMDet that are semanti-
cally close to the word ‘object’
in the linguistic feature space.
We then utilize these words to
construct intuitive text queries
such as ‘all objects’, ‘all enti-

ties’, ‘all visible entities and

objects’, and ‘all obscure enti-

ties and objects’, for exploiting the class-agnostic OD performance of MViTs.
The detections from the individual text queries are combined, filtered with class-
agnostic non-maximum suppression (NMS) to remove duplicate detections, and
top-N boxes are selected for evaluation. We use N=50 in all of our experiments.

Task specific queries: The detection of small and irregular sized objects has
remained a long-standing challenge. In our case, the flexible nature of MViTs
facilitates using a range of human-understandable text queries. The queries can
be chosen that best describe the special requirements needed in a given detection
task. We demonstrate certain scenarios of how this feature can be exploited for
better predictions. Fig. 4a (left) shows an interesting case of how the text query
‘all little objects’ improves recall for small objects as compared to a rather
general text query. Similarly, Fig. 4a (right) indicates how the use of special
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(a) (b)

Fig. 4: (a) MAVL recall for small (S), medium (M) and large (L) objects across three
datasets. The use of specific query (‘all little objects’) increases recall of small objects
across different datasets (left). Targeted detections by the relevant text queries (right).
(b) Visualizations of ORE [28] unknown detections when trained with RPN versus
MAVL unknown pseudo-labels (top). Class-agnostic OD of DETReg [3] when trained
using Selective Search (SS) [64] versus MAVL proposals (bottom).

queries like ‘all long objects’ helps improve the detection of irregular shaped
objects (without any dataset specific fine-tuning!).

4.2 Open-world Object Detection

The open-world setting assumes a realistic paradigm where a model can experi-
ence unknown objects during training and inference [4,13,65,28]. The goal is to
identify unknowns and incrementally learn about them as and when new annota-
tions are provided about a subset of unknowns. This stands in contrast to generic
OD where models are trained to label unknown objects as background and only
focus on the known objects. Here, we explore how a generic class-agnostic OD
model can help with the open-world task to identify unknowns. As a case study,
we apply our approach to a recent open-world detector (ORE) [28].
−ORE Setting: The authors distribute the 80 COCO [40] classes in four incre-
mental learning tasks where 20 classes have been added to the known categories
in each subsequent task. At each stage, the model must learn from the given sub-
set of 20 newly introduced known classes, should not forget the previous known
classes and must be able to detect unknown classes whose labelled examples have
not been provided so far as the unknowns. ORE uses Faster-RCNN [54] as the
base detector, with contrastive clustering in latent space and an energy-based
classification head for unknown detection. It utilizes example-replay strategy [66]
for alleviating forgetting, when progressively learning the unknown categories
once their labels become available.
−Unknown Pseudo-labels with MViTs: ORE exploits the two-stage mechanism
of Faster-RCNN [54] and uses proposals from the class-agnostic region proposal
network (RPN) for pseudo-labelling of unknowns. The foreground object pro-
posals with high objectness score which do not overlap with any ground-truth
are labelled as unknowns. We note that since RPN is only trained on the ob-
jects of interest, its detections are overly sparse and lead to a low recall for
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Table 4: MViT proposals are used for pseudo-labelling of unknowns in ORE [28].
MAVL represents the model trained on a filtered dataset generated by removing all
captions from LMDet listing any of the 60 unknown categories evaluated in ORE. The
results indicate a notable improvement in unknown detection.

Task ID Task 1 Task 2 Task 3 Task 4

mAP mAP mAP mAP
Pseudo-label
for Unknown

Current
Known

R50
Unknown

Previous
Known

Current
Known

Both
R50

Unknown
Previous
Known

Current
Known

Both
R50

Unknown
Previous
Known

Current
Known

Both

RPN 63.4 14.4 58.3 30.8 45.1 11.3 43.3 23.4 36.7 14.8 37.2 20.7 33.1
MAVL∗ 64.0 50.1 61.6 30.8 46.2 49.5 43.8 22.7 36.8 50.9 36.2 20.6 32.3

unknowns. The pipeline therefore lacks a good proposal set that generalizes to
novel objects. We propose a variant of ORE, by using class-agnostic propos-
als for unknown object categories obtained from MAVL. For a fair comparison,
the MViT is trained on a filtered dataset, generated by explicitly removing all
captions from LMDet that contain any unknown category, leaving 0.76M image-
text pairs (see Appendix A.4 for further details). The results in Table 4 and
Fig. 4b indicate significant improvements in unknown detection. See Fig. 10 in
Appendix C for more qualitative results.

4.3 Pretraining for Class-aware Object Detection

Table 5: Effect of using MAVL proposals for
pre-training of DETReg [3] instead of Selective
Search [64] proposals.

Dataset→ Pascal-VOC 10% Pascal-VOC 100%
Model ↓ AP AP50 AP75 AP AP50 AP75

DETReg - SS 51.4 72.2 56.6 63.5 83.3 70.3
DETReg - MAVL 58.8 80.5 65.7 64.5 84.2 71.3

The recent progress in self-supervised
learning (SSL) [46,21,6,79] has
minimized the need for large la-
belled datasets to achieve good
performance on downstream tasks.
These techniques encode the global
image representation and achieve
competitive generalization on var-
ious downstream tasks. However, these methods are suboptimal for class-aware
OD, where the classification needs to be performed at local image patches (i.e.
bounding boxes). Several recent efforts have been reported to address this chal-
lenge. ReSim [73] and DetCo [74] only pretrain the backbone to encode local
and global representations. Whereas, DETReg [3] pretrains both the backbone
and detection network using off-the-shelf proposals from selective search [64] and
achieves improvement over the previous methods.

However, the proposals from heuristic selective search method, used in DE-
TReg pretraining, are overly noisy and contain redundant boxes. We show that
replacing these noisy pseudo-labels with MViT proposals can improve the down-
stream performance on OD task (Table 5). Following DETReg, we select top-30
proposals from MAVL and pretrain the model for 50 epochs on ImageNet [55]
dataset, followed by fine-tuning on 10% and 100% data from Pascal VOC [14]
for 150 and 100 epochs respectively. The results show an absolute gain of ∼ 7
and ∼ 1 in AP in the two respective cases.



Class-agnostic Object Detection with Multi-modal Transformer 11

Table 6: Proposals from MAVL are evaluated against state-of-the-art SOD and COD
approaches. The general† represents ‘all objects’ text query.
Dataset → DUT-OMRON ECSSD
Model ↓ Text Query AP50 R50 AP50 R50

CPD [71] - 64.5 77.4 87.1 92.7
PoolNet [41] - 66.5 78.8 87.4 93.1

MAVL General† 67.0 89.1 84.5 95.7

MAVL Task specific†† 75.5 93.3 85.7 96.1

(a) Salient OD (SOD). Here task

specific†† query combines proposals
from ‘all salient objects’ and ‘all fore-
ground objects’ text queries.

Dataset → CHAMELEON CAMO COD10K
Model ↓ Text Query AP50 R50 AP50 R50 AP50 R50

SINET-V2 [15] - 67.3 76.7 56.5 77.2 44.4 66.6

MAVL General† 30.2 53.3 46.5 75.4 39.6 67.8

MAVL Task specific†† 36.2 61.1 48.0 78.3 42.0 69.1

(b) Camouflaged OD (COD) on three datasets.
Here task specific†† query combines proposals
from ‘all camouflaged objects’ and ‘all disguised
objects’ text queries.

4.4 Salient Object Detection

Given the generalized class-agnostic performance of MViTs on multiple domains,
we evaluate their ability to distinguish between salient and non-salient parts of
an image. We exploit the interactive nature of MViTs by passing specific queries
to detect the salient objects. To this end, MAVL proposals generated with queries
like ‘all salient objects’ are compared with PoolNet [41] and CPD [71] models
that are specifically trained for predicting saliency maps. We evaluate the mod-
els on the DUT-OMRON [77] and ECSSD [57] datasets. These datasets are only
used for MViT evaluation and are not used during training. Since MViTs gener-
ate bounding boxes, we convert the saliency ground-truths and the saliency maps
predicted by CPD and PoolNet to bounding boxes using connected components
labelling [69]. In the case of DUT-OMRON, the provided ground-truth bounding
boxes are used by computing an average across the five human annotations.

Table 6a indicates the effectiveness of MAVL in detecting the foreground
salient objects. It is also interesting to note how the task specific†† query (e.g.,
‘all salient/foreground objects’) provides better prediction of salient parts of
the image in comparison to a more generic† query like ‘all objects’ (Fig. 5a).
See Appendix D.5 and Fig. 11 in Appendix C for additional details.

4.5 Camouflaged Object Detection

Camouflaged object detection (COD) involves identifying objects that are seam-
lessly embedded in their background. The objects have a similar texture to their
surroundings and are difficult to locate as compared to salient or generic objects.
Here, we explore the interactive OD capacity of MViTs on COD task by evalu-
ating the performance of MAVL against the state-of-the-art model (SINET-V2
[15]) on CHAMELEON [59], CAMO [35] and COD10K [16] datasets (Table 6b).
Similar to salient OD setting, we convert camouflage ground-truth masks and
masks predicted by SINET-V2 to bounding boxes using connected components
labelling [69]. However, the available bounding box ground-truths have been
used for COD10K dataset. We note favorable performance of MAVL proposals,
although the model is not specifically trained on camouflaged objects (Fig. 5a).
This affirms the generality of MAVL proposals. See Appendix D.6 and Fig. 11.
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(a)
(b)

Fig. 5: (a) Qualitative results of Salient (Top) and Camouflaged OD (Bottom). The
ground-truth masks and boxes are shown on top right of the images. (b) Complimen-
tary effect of using off-the-shelf proposals from MAVL in Faster RCNN [54] trained
on COCO [40], indicated as ‘combined’ (i.e., RPN + MAVL). The x-axis shows the
number of proposals. MAVL generates good quality proposals, which perform well even
with small proposal set sizes and demonstrate complimentary advantage to RPN.

4.6 Improving Two-stage Object Detection

The class-agnostic object proposals from MViTs have strong understanding of
semantics and can be deployed along with the region proposal network (RPN)
[54]. We observe an improvement in accuracy when off-the-shelf MAVL propos-
als are combined with RPN proposals in Faster RCNN [54] during inference
(Fig. 5b). This indicates the complimentary nature of these proposals that is
based on a rich top-down perception of the image content.

Fig. 5b shows the results of replacing RPN proposals in Faster RCNN with
DETReg [3] and MAVL proposals. The results indicate that the supervised pro-
posal generation methods (RPN and MAVL) perform well compared to the unsu-
pervised method (DETReg). However, off-the-shelf MAVL proposals show bet-
ter performance than RPN when using a small proposal set (e.g., 10 proposals).
Combining RPN and MAVL proposals improves the overall detection accuracy.

5 What makes MViTs a Generic Detector?

Our empirical analysis shows the state-of-the-art performance of MViTs towards
class-agnostic OD across different domains (Sec. 3) which positively impacts a
number of downstream applications (Sec. 4). Having established this, we conduct
a series of systematic experiments to explore the contributing factors for repre-
sentational learning of the general ‘objectness measure’ in MViTs. Specifically,
we identify the role of supervision and multi-modal learning as crucial factors.

5.1 On the importance of supervision

We consider two recent unsupervised learning models, DETReg [3] and UP-
DETR [11]. DETReg trains Deformable DETR [83] to localize objects in class-
agnostic fashion, with bounding box pseudo-labels from an off-the-shelf region
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Table 7: MAVL proposals perform well com-
pared to unsupervised methods (UP-DETR
[11] and DETReg [3]) and supervised uni-
modal method (Def-DETR [83]).

Dataset → Pascal-VOC COCO KITTI
Model ↓ Supervision AP50 R50 AP50 R50 AP50 R50

UP-DETR unsupervised 0.56 16.6 0.19 6.56 0.01 0.65
DETReg self-supervised 2.58 45.7 2.04 26.0 0.01 2.48

Def-DETR box-level 30.1 81.0 20.0 53.5 23.7 55.0
MAVL box + text 68.6 91.3 43.6 65.0 48.2 63.5

proposal method (Selective Search
[64]). Meanwhile, UP-DETR per-
forms unsupervised pretraining on
random query patches in an im-
age for class-agnostic OD. Both
the unsupervised models, DETReg
and UP-DETR, are trained on uni-
modal (Deformable DETR [83])
trained on LMDet in class-agnostic
fashion, to evaluate the perfor-
mance contributed by language supervision. We note that the image-level su-
pervision with only box labels improves the performance in comparison with
unsupervised methods. However, the use of caption texts aligned with input
images proves to be vital and improves the performance approximately by two
times, highlighting the importance of multi-modal supervision.

5.2 How much does language contribute?

Table 8: Effect of removing language branch
from MViTs keeping the data loader struc-
ture intact. The performance is not affected
largely as the language structure is still in-
tact (boxes from caption are seen together).

Dataset→ Pascal-VOC COCO KITTI
Model ↓ Lang. AP50 R50 AP50 R50 AP50 R50

MDETR ✓ 63.9 88.0 38.1 58.5 42.5 60.9
MAVL ✓ 65.0 89.1 39.3 62.0 39.0 61.0

MDETR × 59.7 86.4 33.4 57.9 36.9 55.0
MAVL × 61.6 86.7 34.4 58.3 36.5 58.9

Given the importance of multi-modal
supervision towards better perfor-
mance, we find it pertinent to explore
the benefit solely from the language
supervision. We conduct an ablation
study on MDETR and MAVL, by re-
moving all textual inputs correspond-
ing to captions, but keeping intact
the structure introduced by language
i.e., learning to localize boxes corre-
sponding to a caption for each image
in an iteration (without any language
branch). Both MDETR and MAVL are trained on LMDet containing aligned
image-text pairs. Here, the structure in which the information is fed during
training is of high importance to us. Each image may have multiple captions,
and hence it may be seen multiple times in the same iteration, but with varying
contexts. The experimental setup removes all captions during training and eval-
uations, however keeps the described data loader structure intact, thus having
approximately 1.3M iterations in an epoch. All models use ResNet-101 backbone
and are evaluated after 10 epochs for ablation (instead of total 20 epochs). Ta-
ble 8 indicate that visual branch plays a vital role, however the importance of
language cannot be ruled out since the boxes related to a caption are still seen
together. We analyze the importance of this implicit language structure next.
Ablation on language structure: The above experimental results reveal that
removal of textual information does not significantly affect model performance.
However, a further ablation on the structure introduced by language is required
for the completeness of this evaluation. As such, we conduct ablations at five lev-
els using Deformable DETR [83], as shown in Table 9. First, all the annotations
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in LMDet are combined at image level by concatenating the bounding boxes
of all captions corresponding to an image (Setting-1). This removes any prior
information introduced by the language structure. Then, class-agnostic NMS is
applied at a threshold of 0.9 to filter boxes that have high overlaps (Setting-2). To
imitate the repetitive pattern introduced during training, bounding box annota-
tions corresponding to an image are randomly sampled and grouped (Setting-3).

Table 9: Experimental analysis to explore the
contribution of language by removing all tex-
tual inputs, but maintaining the structure in-
troduced by captions. Experiments are per-
formed on Def-DETR [83] using LMDet.

Pascal-VOC MSCOCO KITTI
Experiment

Language
Structure AP50 R50 AP50 R50 AP50 R50

Setting-1 × 16.2 74.5 10.7 47.0 19.4 57.3
Setting-2 × 30.1 81.0 20.0 53.5 23.7 55.0
Setting-3 × 33.8 82.5 19.3 55.8 21.2 52.7
Setting-4 × 35.1 82.7 21.2 56.3 21.5 58.5

Setting-5 ✓ 61.6 86.7 34.4 58.3 36.5 58.9

The number of samples in a com-
bination is kept close to the av-
erage number of boxes in image-
text pairs in original MAVL train-
ing (∼6 boxes). Finally, a longer
training schedule is used in the
same setting to replicate a scenario
closer to the original MAVL train-
ing (Setting-4). These four settings
are then compared with a model
that is trained without any cap-
tions, but maintains the structure
introduced by language (Setting-5, same as Table 8 last row). This analysis indi-
cates that language structure has significant impact in learning a general notion
of objectness. With the use of aligned image-text pairs, additional contextual
information is provided to the model. As objects generally tend to co-occur with
other objects and certain scenes, such contexual association can be exploited for
visual understanding [47]. Use of captions that describe a scene conveys such
a notion of co-occurring objects and their mutual relationships, indicating that
the structure introduced by language provides rich semantic and spatial context.
Consistent with our findings, other recent efforts also indicate strong generaliza-
tion achieved using the context encoded within natural language [80,53,78,82].

6 Conclusion

This paper demonstrates intriguing performance of MViTs, trained only on nat-
ural images, for generic OD across a diverse set of domains. We systematically
study the main reasons for this generalization, and note that the language struc-
ture available in image-caption pairs used to train MViTs plays a key role.
Based on these insights, we develop a more flexible and efficient MViT for off-
the-shelf class-agnostic OD, that can be instantiated with different text queries
to generate desired proposal sets. Furthermore, we show various use-cases where
class-agnostic proposals can be used to improve performance e.g., open-world
OD, camouflaged and salient OD, supervised and self-supervised OD.
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Marlet, R., Ponce, J.: Localizing Objects with Self-Supervised Transformers and
no Labels. In: British Machine Vision Conference (2021)

59. Skurowski, P., Abdulameer, H., B laszczyk, J., Depta, T., Kornacki, A., Kozie l, P.:
Animal Camouflage Analysis: CHAMELEON Database. Unpublished Manuscript
2(6), 7 (2018)

60. Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., Dai, J.: VL-BERT: Pre-training of
Generic Visual-Linguistic Representations. In: International Conference on Learn-
ing Representations (2019)

61. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: A Joint
Model for Video and Language Representation Learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7464–
7473 (2019)

62. Tan, H., Bansal, M.: LXMERT: Learning Cross-Modality Encoder Representations
from Transformers. In: Conference on Empirical Methods in Natural Language
Processing (2019)

63. Tan, M., Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional Neu-
ral Networks. In: International Conference on Machine Learning. pp. 6105–6114.
PMLR (2019)

64. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective Search
for Object Recognition. International Journal of Computer Vision 104(2), 154–171
(2013)

65. Wang, W., Feiszli, M., Wang, H., Tran, D.: Unidentified Video Objects: A Bench-
mark for Dense, Open-World Segmentation. arXiv preprint arXiv:2104.04691
(2021)

66. Wang, X., Huang, T.E., Darrell, T., Gonzalez, J.E., Yu, F.: Frustratingly Simple
Few-Shot Object Detection. arXiv preprint arXiv:2003.06957 (2020)



Class-agnostic Object Detection with Multi-modal Transformer 19

67. Wang, X., Cai, Z., Gao, D., Vasconcelos, N.: Towards Universal Object Detection
by Domain Attention. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 7289–7298 (2019)

68. Wightman, R.: PyTorch Image Models. https://github.com/rwightman/

pytorch-image-models (2019). https://doi.org/10.5281/zenodo.4414861
69. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algo-

rithms. In: Medical Imaging 2005: Image Processing. vol. 5747, pp. 1965–1976.
International Society for Optics and Photonics (2005)

70. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.
com/facebookresearch/detectron2 (2019)

71. Wu, Z., Su, L., Huang, Q.: Cascaded Partial Decoder for Fast and Accurate Salient
Object Detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3907–3916 (2019)

72. Xia, G.S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M.,
Zhang, L.: DOTA: A Large-scale Dataset for Object Detection in Aerial Images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3974–3983 (2018)

73. Xiao, T., Reed, C.J., Wang, X., Keutzer, K., Darrell, T.: Region Similarity Rep-
resentation Learning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (2021)

74. Xie, E., Ding, J., Wang, W., Zhan, X., Xu, H., Sun, P., Li, Z., Luo, P.: DetCo:
Unsupervised Contrastive Learning for Object Detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8392–
8401 (2021)

75. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with Noisy Student im-
proves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10687–10698 (2020)

76. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of
large-scale lesion annotations and universal lesion detection with deep learning.
Journal of medical imaging 5(3), 036501 (2018)

77. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency Detection via Graph-
Based Manifold Ranking. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 3166–3173 (2013)

78. Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-Vocabulary Object Detec-
tion Using Captions. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14393–14402 (2021)

79. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow Twins: Self-Supervised
Learning via Redundancy Reduction. In: International Conference on Machine
Learning (2021)

80. Zhang, M., Tseng, C., Kreiman, G.: Putting visual object recognition in context.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12985–12994 (2020)

81. Zhang, Z., Liu, Y., Chen, X., Zhu, Y., Cheng, M.M., Saligrama, V., Torr, P.H.:
BING++: A Fast High Quality Object Proposal Generator at 100fps. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence. vol. 40, pp. 1209–1223
(2018)

82. Zhou, M., Zhou, L., Wang, S., Cheng, Y., Li, L., Yu, Z., Liu, J.: UC2: Universal
Cross-lingual Cross-modal Vision-and-Language Pre-training. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
4155–4165 (2021)

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


20 Maaz et al.

83. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable
Transformers for End-to-End Object Detection. In: International Conference on
Learning Representations (2021)

84. Zitnick, C.L., Dollár, P.: Edge Boxes: Locating Object Proposals from Edges. In:
The European Conference on Computer Vision. pp. 391–405. Springer (2014)


	Class-agnostic Object Detection with Multi-modal Transformer

