
Supplementary Material:
A Simple Single-Scale Vision Transformer for
Object Detection and Instance Segmentation

Wuyang Chen1⋆, Xianzhi Du2, Fan Yang2

Lucas Beyer2, Xiaohua Zhai2, Tsung-Yi Lin2, Huizhong Chen2, Jing Li2,
Xiaodan Song2, Zhangyang Wang1, and Denny Zhou2

1 University of Texas at Austin, Austin TX 78712, USA
{wuyang.chen,atlaswang}@utexas.edu

2 Google
{xianzhi,fyangf,lbeyer,xzhai,tsungyi,

huizhongc,jingli,xiaodansong,dennyzhou}@google.com

1 Pascal VOC semantic segmentation

Settings Semantic segmentation experiments are conducted on Pascal VOC 2012,
which contains 20 foreground classes and 1 background. For training, we use an
augmented version of the dataset [9] with extra annotations of 10582 images
(trainaug). The default training setup uses scale jittering of [0.5, 2.0] and random
horizontal image flipping.

1.1 Scaling rule of UViTs

To also achieve the best performance-efficiency trade-off on semantic segmentation
task, we further systematically study the model scaling of UViTs on depths and
widths on the Pascal VOC dataset. We show our results3 in Figure 1. For
all models (circle markers), we first train them on ImageNet-1k, then directly
fine-tune them on Pascal VOC. We fix the input size as 512 × 512.

– Depth (number of attention blocks): we study different UViT models of depths
selected from {12, 18, 24, 32}.

– Width (i.e. hidden size, or output dimension of attention blocks): we will tune
the width to further control different model sizes and computation costs to
make different scaling rules fairly comparable.

In summary, based on our compound scaling rule, we find the UViT of depth 32
performs the best on Pascal VOC.
⋆ Work done during the first author’s research internship with Google.
3 This scaling rule is studied before we study the attention window strategy in Sec-

tion 1.3. Thus for all models in Figure 1 we adopt the window scale as 1

2
, for fair

comparisons.



2 W. Chen et al.

150 200 250 300 350
0.59

0.60

0.61

0.62

0.63

0.64

0.65

FLOPs (G)

Pa
sc

al
 V

OC
 m

Io
U 

[%
] L = 12

L = 18
L = 24
L = 32

T
S

B

20 30 40 50 60
0.59

0.60

0.61

0.62

0.63

0.64

0.65

Params. (M)

Pa
sc

al
 V

OC
 m

Io
U 

[%
] L = 12

L = 18
L = 24
L = 32

T
S

B

Fig. 1: Model scaling rule for UViT on Pascal VOC semantic segmentation (ImageNet
pretrained, before COCO pretraining). 32 attention blocks (blue) perform better
than shallower UViTs. Different sizes of markers represent the hidden sizes (widths).

1.2 Architectures

We propose three variants of our UViT variants. The architecture configurations
of our model variants are listed in Table 1, and are also annotated in Figure 1
(“T”, “S”, “B” in white). The number of heads is fixed as six, and the expansion
ratio of each FFN (feed-forward network) layer is fixed as four in all experiments.
We also scale up our UViT into a huge version following the design in [7,15], and
denote it as “UViT-H”.

1.3 Attention windows on Pascal VOC

In this section, we further study the attention window strategy on the Pascal
VOC dataset, using our UViT-B. As shown in Table 2, progressive attention



ECCV-22 submission ID 7441 3

Table 1: Architecture variants of our UViT for Pascal VOC semantic segmentation.

Name Depth
Hidden

Size Params. (M)

UViT-T 32 192 18.1
UViT-S 32 240 26.7
UViT-B 32 342 50.7
UViT-H 32 1280 529.9

windows again achieve the best performance. Global attentions in deep layers
are vital, and a smaller window in early attentions can improve efficiency. In
conclusion, we set the window scale of our UViT as “[2−1] × 28 → [1−1] × 4” for
its reduced computation cost.

Table 2: Local attention windows in early layers can improve model efficiency,
and global attention windows in deep layers are vital to the final performance on
Pascal VOC. Model: UViT-B.

[window_scale] ×#layers GFLOPs APval

[1] × 32 596.7 81.1
[2−1] × 32 315.2 80.6

[2−1] × 28 → [1−1] × 4 350.4 81.2

1.4 Final performance on Pascal VOC

Following the same procedure in [3,13,8,4,5,1,12,16,10,14], we employ the COCO
dataset [11] to pretrain our model. From Table 3 we can see that our UViT is
highly compact in terms of the number of parameters, and achieve competitive
mIoU with comparable FLOPs. In addition, it is worth noting that since we
only leverage a single-scale feature map, we do not adopt advanced segmentation
decoders like ASPP [4] but just use plain convolutional layers for predictions,
which is to our disadvantage. Again, without adopting any design conventions
from CNNs, the results of our simple UViT architectures suggest that, a simple
single-scale transformer backbone can fulfill the dense prediction tasks.



4 W. Chen et al.

Table 3: Segmentation results on Pascal VOC 2012. Our UViT leverages a plain
convolutional segmentation head, without any test-time augmentation.

Backbone Resolution GFLOPs Params. (M) mIoU

WASPnet-CRF [2] - - 47.5 80.4
DeepLabv3+ (ResNet-101) [6] 512×512 298 58.6 79.4

UViT-T (ours) 512×512 163 18.1 79.0
UViT-S (ours) 512×512 215 26.7 79.9
UViT-B (ours) 512×512 350 50.7 81.2
UViT-H (ours) 640×640 3846 529.9 88.1

2 Model architectures studied in Figure 2

We show details of all architectures studied in Figure 2 (main body) in Table 4
below. As mentioned in Section 3.1 (main body), we study all combinations
of the above three techniques (spatial downsampling “SD”, multi-scale features
“MF”, doubled channels “2×”), i.e. eight settings in total, and show the results in
Figure 2 (main body). Each dot in Figure 2 (main body) indicates an individually
designed and trained model. To make all comparisons fair, we carefully design
all models such that they are all of around 72 million parameters. We control
their FLOPs by changing the depths or attention windows allocated to different
stages.

3 Model architectures in Figure 4 and Figure 5

We show all architectures studied in our compound scaling rule in Figure 4 and
Figure 5 (main body). All models are of 2−1-scale attention windows for fair
comparisons.



ECCV-22 submission ID 7441 5

Table 4: Model architectures in Figure 2 (main body), all studied under a 640×640
input size on MS-COCO. “SD”: spatial downsampling. “MF”: multi-scale features.
“2×”: doubled channels. Without any of these three techniques (first section in
this table), the whole network has a constant feature resolution and hidden size;
all other seven settings below will split the network into three stages, since they
require either a progressive feature downsampling or multi-scale features from
each stage. Input scale is relative to the 2D shape of the input image H ×W
(e.g. 8−1 indicates the 2D shape of the UViT’s sequence feature is 1

8
H × 1

8
W ).

The window scale is relative to the 2D shape of sequence feature’s h × w (e.g.
8
−1 indicates the 2D shape of the attention window is 1

8
h × 1

8
w). Numbers with

underscores in the column “Output Scale” indicate feature maps that will be
fed into the FPN detection head (i.e., the last output of backbone if no “MF” is
applied, or features from all three stages if “MF” is applied).

SD MF 2× Input Scale #Layers Window Scale Hidden Size Output Scale Params. (M) FLOPs (G) mAP

8
−1 18

16
−1

384 8
−1 72.1

534.1 44.5
8
−1 540.9 48.2

4
−1 567.9 50.1

2
−1 676.2 50.7
1 1109.1 50.8

SD MF 2×
Stage 1 Stage 2 Stage 3

Params. (M) FLOPs (G) mAPInput
Scale #Layers

Window
Scale

Hidden
Size

Output
Scale

Input
Scale #Layers

Window
Scale

Hidden
Size

Output
Scale

Input
Scale #Layers

Window
Scale

Hidden
Size

Output
Scale

✓

8
−1

6

1 384 8
−1

16
−1

6

1 384 16
−1

32
−1

6

1 384 32
−1 72.1

607.1 41.0
✓ 8 5 5 688.28 42.0
✓ 10 4 4 769.47 42.6
✓ 12 3 3 850.68 43.0
✓ 14 2 2 931.88 43.4

✓

8
−1 6

16
−1

384 8
−1

8
−1 6

16
−1

384 16
−1

8
−1 6

16
−1

384 32
−1 72.1

534.3 44.3
✓ 8

−1
8
−1

8
−1 541.03 47.6

✓ 4
−1

4
−1

4
−1 568.09 49.4

✓ 2
−1

2
−1

2
−1 676.33 50.3

✓ 1 1 1 1109.3 50.2

✓

8
−1 6

16
−1

152 8
−1

8
−1 6

16
−1

304 8
−1

8
−1 6

16
−1

608 8
−1 73.8

558.4 43.4
✓ 8

−1
8
−1

8
−1 561.5 44.4

✓ 4
−1

4
−1

4
−1 587.7 46.3

✓ 2
−1

2
−1

2
−1 692.2 46.6

✓ 1 1 1 1110.2 48.3

✓ ✓

8
−1

2

1 384 8
−1

16
−1

8

1 384 16
−1

32
−1

8

1 384 32
−1 72.1

459.7 45.8
✓ ✓ 4 7 7 540.9 47.5
✓ ✓ 6 6 6 622.1 48.5
✓ ✓ 8 5 5 703.3 48.0
✓ ✓ 10 4 4 784.5 48.6
✓ ✓ 12 3 3 865.7 50.2
✓ ✓ 15 2 1 989.5 50.4

✓ ✓

8
−1 16 1

128

8
−1

16
−1 1 1

256

16
−1

32
−1

9

1

512

32
−1

70.2 529.1 37.6
✓ ✓ 160 320 5 640 69.3 581.7 38.9
✓ ✓ 192 384 3 768 69.3 637.4 40.2
✓ ✓ 224 448 2 896 71.4 696.6 41.7
✓ ✓ 256 512 1 1024 69.2 756.5 42.5

✓ ✓

8
−1 6

16
−1

152 8
−1

8
−1 6

16
−1

304 16
−1

8
−1 6

16
−1

608 32
−1 73.8

566.3 45.7
✓ ✓ 8

−1
8
−1

8
−1 569.5 46.4

✓ ✓ 4
−1

4
−1

4
−1 595.6 48.1

✓ ✓ 2
−1

2
−1

2
−1 700.1 49.0

✓ ✓ ✓

8
−1

16

1

128

8
−1

16
−1 1 1

256

16
−1

32
−1

9

1

512

32
−1

73.3 552.1 44.3
✓ ✓ ✓ 16 160 320 5 640 72.4 604.9 45.5
✓ ✓ ✓ 16 192 384 3 768 72.4 660.7 47.6
✓ ✓ ✓ 16 224 448 2 896 74.5 719.9 48.8
✓ ✓ ✓ 16 256 512 1 1024 72.4 779.9 49.4
✓ ✓ ✓ 28 224 448 1 896 72.1 992.3 49.5



6 W. Chen et al.

Table 5: Model architectures in Figure 4 and Figure 5 (MS-COCO) (in main body).
Configurations (depth, width) of UViT-T/S/B are annotated.

Input Size Depth Width Params. (M) FLOPs (G) mAP

640 × 640 18

384 72.1 676.2 50.4
432 80.9 748.3 50.5
462 86.9 796.6 50.7
492 93.3 847.4 50.4
564 110.2 979.4 50.1

768 × 768 18

288 58.2 725.9 51.1
306 60.7 761.1 51.5
330 64.3 810.0 51.3
384 73.1 928.5 51.5
432 82.1 1043.5 51.6
462 88.2 1120.1 51.3

896 × 896 18

186 47.4 710.2 51
222 (UViT-T) 51.0 801.4 51.3

246 53.8 866.1 51.7
288 (UViT-S) 59.2 986.8 51.7

330 65.4 1117.1 52.1
384 (UViT-B) 74.4 1298.7 52.3

1024 × 1024 18

120 42.6 710.3 47.9
132 43.5 750.1 48.9
144 44.4 791.0 49.3
162 45.8 854.3 50.4
198 49.3 987.6 51.4
246 54.7 1179.7 51.7
288 60.3 1361.2 52.0

896 × 896 12

276 52.1 748.4 50.8
300 54.4 796.2 50.8
324 56.9 846.2 51.0
360 60.9 925.0 51.5
390 64.5 994.2 51.5

896 × 896 24

156 46.5 739.0 50.6
180 49.2 813.8 50.8
192 50.6 852.7 51.3
258 60.1 1085.4 51.8
294 66.3 1225.7 51.6

896 × 896 32

120 44.6 732.5 50
132 45.9 777.4 50.4
144 47.3 823.8 51.2
180 52.3 971.1 51.5
240 62.8 1244.4 52.0

896 × 896 40

96 43.2 723.2 48.5
102 43.8 749.3 49.1
114 45.2 802.9 50.1
126 46.8 858.2 50.7
150 50.3 974.0 51.2
156 51.2 1004.0 51.2



ECCV-22 submission ID 7441 7

References

1. Amirul Islam, M., Rochan, M., Bruce, N.D., Wang, Y.: Gated feedback refinement
network for dense image labeling. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3751–3759 (2017)

2. Artacho, B., Savakis, A.: Waterfall atrous spatial pooling architecture for efficient
semantic segmentation. Sensors 19(24), 5361 (2019)

3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image
segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062 (2014)

4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence
40(4), 834–848 (2017)

5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the European conference on computer vision (ECCV). pp. 801–818 (2018)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020)

8. Ghiasi, G., Fowlkes, C.C.: Laplacian pyramid reconstruction and refinement for
semantic segmentation. In: European conference on computer vision. pp. 519–534.
Springer (2016)

9. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: 2011 International Conference on Computer Vision. pp.
991–998. IEEE (2011)

10. Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks
for high-resolution semantic segmentation. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1925–1934 (2017)

11. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

12. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters–improve
semantic segmentation by global convolutional network. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 4353–4361 (2017)

13. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 234–241. Springer (2015)

14. Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G.: Under-
standing convolution for semantic segmentation. In: 2018 IEEE winter conference
on applications of computer vision (WACV). pp. 1451–1460. IEEE (2018)

15. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 12104–12113 (2022)

16. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 2881–2890 (2017)


	Supplementary Material:A Simple Single-Scale Vision Transformer for Object Detection and Instance Segmentation
	Pascal VOC semantic segmentation
	Scaling rule of UViTs
	Architectures
	Attention windows on Pascal VOC
	Final performance on Pascal VOC

	Model architectures studied in Figure 2
	Model architectures in Figure 4 and Figure 5


