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Abstract. Current object detection systems and benchmarks typically
handle a limited number of categories, up to about a thousand categories.
This paper scales the number of categories for object detection systems
and benchmarks up to 21,000, by leveraging existing object detection and
image classification data. Unlike previous efforts that usually transfer
knowledge from base detectors to image classification data, we propose
to rely more on a reverse information flow from a base image classifier to
object detection data. In this framework, the large-vocabulary classifica-
tion capability is first learnt thoroughly using only the image classifica-
tion data. In this step, the image classification problem is reformulated
as a special configuration of object detection that treats the entire image
as a special RoI. Then, a simple multi-task learning approach is used to
join the image classification and object detection data, with the back-
bone and the RoI classification branch shared between two tasks. This
two-stage approach, though very simple without a sophisticated process
such as multi-instance learning (MIL) to generate pseudo labels for ob-
ject proposals on the image classification data, performs rather strongly
that it surpasses previous large-vocabulary object detection systems on
a standard evaluation protocol of tailored LVIS.

Considering that the tailored LVIS evaluation only accounts for a few
hundred novel object categories, we present a new evaluation benchmark
that assesses the detection of all 21,841 object classes in the ImageNet-
21K dataset. The baseline approach and evaluation benchmark will be
publicly available at https://github.com/SwinTransformer/Simple-21K-
Detection. We hope these would ease future research on large-vocabulary
object detection.

Keywords: Large-vocabulary object detection; benchmark; multi-task
learning

1 Introduction

Current object detection datasets typically have a limited number of categories,
for example, 80 classes of COCO datasets [27], 200 classes of ImageNet-DET [5],
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Fig. 1. (a) The knowledge flow of previous works is from a base object detector to image
classification data using a weakly supervised object detection (WSOD) framework;
(b) The knowledge flow of our approach is from a thoroughly-trained reformulated
visual classifier, to a simple multi-task learning framework that combines reformulated
classification and object detection.

365 classes of Objects365 [33], 600 classes of OpenImage [23] , 1,203 classes of
LVIS [14], 1,594 classes of Visual Genome [21], and so on. Limited by object
detection datasets, existing object detection systems typically detect up to a
thousand categories or use up to a thousand categories for evaluation.

This paper aims to scale the number of categories in an object detection sys-
tem up to more than 21,000. We note that existing image classification datasets
involve much more object categories, such as the 21,841-category ImageNet-21K
image classification dataset[5], which can serve as a complementary source to
help achieve the goal of large-vocabulary object detection. Therefore, we are
devoted to combining the object detection datasets that have limited object cat-
egories, with image classification datasets that have a large number of object
categories, for large-vocabulary object detection. In previous works[6,41,47,51],
such combination usually starts from a base detector that learns good fore-
ground/background classification and localization capabilities, e.g., a good re-
gion proposal network (RPN), and then transfers these capabilities to the image
classification data using a multi-instance learning (MIL) framework [2,41] (see
Figure 1(a)). We argue that this knowledge flow may be sub-optimal when the
number of object categories is large, as the large-vocabulary classification ca-
pability is more difficult to be seized at scale. For example, training a good
classifier for an ImageNet-1K dataset typically requires long training iterations
with strong augmentation, such as traversing about 300 million image samples,
however, iterating about 4 million images with weak augmentation is enough to
train a good detector on the COCO object detection dataset. In fact, a general
foreground/background separation capability that works well to some extent is
usually easier to obtain, even when trained on a detection dataset with limited
categories, e.g., COCO [13].

Based on this view, we propose to make a reverse information flow (see Fig-
ure 1(b)), that we start from a good image classifier and then transfer the gained
large-vocabulary classification capability into the object detection data. To en-
able smooth knowledge transferring, we reformulate the standard image classi-
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Table 1. Three experimental setups for the evaluation of large-vocabulary object detec-
tion methods based on joining of the object detection and image classification datasets.

Setups
DET dataset CLS dataset

Evaluation metric
notation #cat. #im. notation #cat. #im.

S1 LVIS-997-base 720 11K IN-997 997 1.23M LVIS-997-novel mAP

S2 COCO 80 11.5K IN-1K 1,000 1.28M IN-1K loc. acc.

S3 Object365v2 365 1.7M IN-21K 21,841 14M
IN-21K loc. acc.

LVIS finetune mAP

fication approach, which uses a linear classification head on top of a backbone
network, as a special configuration of object detection. In this new formulation,
an image is represented by a special RoI corresponding to the entire image (red
bounding box with dashed lines), and a heavier RoI classification head like that
in an object detection framework is applied on this special RoI to realize image
classification. By this reformulation, the two tasks of image classification and
object detection are better aligned.

After having gained the large-vocabulary image classification capability by
training on the image classification data alone, we employ a simple multi-task
learning framework to join the two tasks of image classification and object detec-
tion. The image classification and object detection tasks will share the backbone,
RPN network, as well as the RoI classification head. The weights of the shared
networks are initialized from that of the first step, such that the initial network
has owned a strong large-vocabulary capability.

As shown in Figure 1(b), the above two-stage approach does not employ
an explicit foreground/background separation mechanism on the image data
like that in previous weakly supervised object detection (WSOD) works. This
degeneration strategy simplifies training, yet performs surprisingly well in de-
tecting object categories that do not appear in the object detection data. We
hypothesize that the sharing of RPN and RoI classification head has been able
to help the framework dig out the capabilities required by a large-vocabulary
object detector.

We conducted three experimental setups, named S1, S2, and S3, described
in Table 1. The first setup S1 aims to evaluate the developed framework with a
standard protocol of tailored LVIS. It mainly follows [13] and a concurrent work
of [54], which use the 997 intersected categories of the LVIS and ImageNet-21K
datasets for experiments. The categories are divided into 720 base (“common”
and “frequent” of LVIS) and 277 novel sets (“rare” of LVIS). The training uses
an LVIS-base object detection set and an IN-997 image classification set. The
evaluation is conducted on LVIS-novel set. In the second setup S2, the number
of categories for evaluation is extended to 1,000. This setup follows the previous
weakly supervised object localization field [53,44,3,50,10] to evaluate the local-
ization accuracy on ImageNet-1K. In this setup, we allow the use of additional
COCO object detection datasets to facilitate localization on ImageNet-1K. The
third setup S3 allows training of object detectors with the number of categories as
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large as 21,000. This setup adopts the Object365v2 object detection dataset [33]
and ImageNet-21K image classification dataset for training. To be able to evalu-
ate a large number of object categories, we randomly select 5 validation images
for each object category in the ImageNet-21K dataset and annotate all ground-
truth bounding boxes on these images. This results in approximately 100,000
images being annotated for evaluation.

On Setup S1, the proposed approach has a much smaller performance gap
between the base set and the novel set than recent efforts based on pre-trained
visual language models (such as CLIP [30]) [13], or single-stage joint detec-
tion/classification [54]. On Setup S2, our approach achieves 75.1% top-1 accuracy
with GT category labels known, and 68.3% top-1 accuracy with GT category
labels unknown, which are absolutely 6.6% / 13.5% higher than previous best
weakly supervised object localization approaches[50]. This indicates the benefits
of an additional base detector. On Setup S3, we demonstrate a 21,000-category
object detector. All these experiments demonstrate the effectiveness of the pro-
posed method. In addition, as a by-product, the proposed approach shows to
learn representations that have better transferability to downstream tasks such
as object detection on a standard LVIS, than methods that training on two
datasets alone or successively.

We hope our simple approach, along with the new 21,000-category evaluation
benchmark, will facilitate future research on large-vocabulary object detection.

2 Related Work

Image Classification is a visual task that assigns category labels to images. This
problem has largely driven the development of visual backbone architectures,
such as convolutional neural networks [22,34,16] and vision Transformers[8,28].
Image classification datasets can be made with large-vocabulary, for example,
the ImageNet-21K dataset [5] contains 21,841 categories; Google’s JFT dataset
contains 18,291 categories and 3 billion images. These large vocabulary image
classification datasets serve as a powerful visual pre-training and semantic con-
cept learning basis for a variety of vision problems. A common practice[34,16]
for image classification is to apply a simple linear head on top of the backbone
architecture to obtain the classification. In training, it typically[22,8] employs
strong augmentations to enhance the networks’ invariance property, and a long
learning scheduler to train the network thoroughly, such as to distinguish subtle
differences between different object categories when the vocabulary size is large.

Object Detection is a vision task that simultaneously localizes objects and per-
forms categorical classification for each object. This is a basic task that provides
localized objects for the following additional recognition or analysis aim. Unlike
classification datasets, object detection datasets are typically much smaller in
terms of the number of classes and images. COCO [27] is the most widely used
dataset for evaluating detection methods, with 80 object categories and 115K
training images. Object365 [33] / OpenImages [23] scale the number of categories



Simple 21,000-Category Detection 5

and images up to 365 / 600 categories and 1.7 / 1.9 million images. LVIS [14] is
a re-annotation of COCO images with about 1,200 object categories that, along
with Visual Genome [21], are the two largest publicly available object detection
datasets on the number of categories. In general, object detection annotations
are very expensive, which limit the scale in the number of images and categories.

Weakly Supervised Object Detection (WSOD) and Localization (WSOL) are
two problems that learn to use image classification data for object detection
and localization, respectively. There have been extensive studies on these top-
ics [36,2,38,37,7,53,35,44,3,48,49,50,29,10]. The WSOD methods [36,2,38,37,7]
usually first use unsupervised proposal methods such as EdgeBoxes [55] or Se-
lective Search [42] to generate candidate bounding boxes, and then learns from
the image label annotations by multi-instance learning (MIL). The WSOL meth-
ods [53,35,44,3,48,49,50,29,10] are mostly based on CAM [53] with the class ac-
tivation maps as an indicator of the object area. Previous WSOD and WSOL
methods are usually evaluated on relatively small datasets, such as COCO/VOC
for WSOD and ImageNet-1K for WSOL. In addition, they try to solve difficult
detection problems using only image labels without any box annotation, and
therefore the accuracy of these systems is often too low for practical use.

This paper studies how image classification and object detection data can
be combined to achieve large-vocabulary object detection for a more realistic
scenario. There is a more relevant family of work as below.

WSOD with Base Detectors This family of work transfers knowledge in base
detectors to aid in the weakly supervised object detection of images with category
label annotations. The knowledge transferred from a base detector is either an
objectness predictor [6,47], an object proposal [41,51], or a universal bounding
box regressor [24].

While most of these efforts are done on small-scale datasets such as Pascal
VOC [9] and COCO [27], there are also some works that use these techniques to
enable large-vocabulary or open-vocabulary object detection as below.

Large-Vocabulary Object Detection YOLO9000 [31] combines detection and clas-
sification data to obtain a 9,000-category object detector. It jointly learns a
standard detection loss on regular box annotations and a weakly supervised de-
tection loss that assigns the classification labels to the anchor with the highest
prediction score. [43] detects 11K object categories by exploiting semantic rela-
tionships between categories. A concurrent work to ours, Detic [54], learns about
standard detection and weakly supervised detection similar to YOLO9000, but
assigns classification labels to the largest object proposal. Our approach also
attempts to transfer knowledge between tasks. However, unlike previous efforts
that typically transfer knowledge from base detectors to image classification
data, we emphasize the opposite knowledge flow and show that it is very ben-
eficial to transfer the powerful large-vocabulary classifier learnt on the image
classification datasets to object detection. In addition, unlike the weakly su-
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pervised detection methods, we show a fairly simple multi-task learning that
combines classification and detection to already achieve very good performance.

Open-Vocabulary Object Detection Another line is to perform open-vocabulary
object detection. Early works expand the classifier of a base detector to be able to
handle new categories by an already learnt word embedding [1]. A recent fashion
is to use image text contrastive learning, such as CLIP [30], to help extend the
classifier in a base detector to open-vocabulary scenario [45,13,25]. Our work
is basically complementary to these works, and the text embeddings learnt in
CLIP [30] also help to extend our approach to open-vocabulary scenario. We
leave this as our future research.

3 Approach

3.1 Image Classification and Object Detection Practices

This paper aims to combine image classification data and object detection data
towards large-vocabulary object detection. In this subsection, we review the
common practice for image classification and object detection.

Image Classification Practice In image classification models [22,34,16,8,28], the
resolution of input images is usually small, such as 224 × 224. In training, the
images go through a series of strong augmentations: random cropping [22], color
jittering [22], mix up [46], random erasing [52], and so on, before they are fed
into the encoder. The strong augmentations show to be very crucial for image
classification training [40,28], probably because a good classifier needs to pos-
sess strong deformation invariance. After extracting features with the encoder,
classification task usually uses the last layer output of the encoder with average
pooling, as the input feature of the classification head. A cross-entropy loss is
widely used to drive the training of classification tasks.

Object Detection Practice In the object detection methods [12,32,39], the reso-
lution of input images is usually set high to be able to detect tiny objects, e.g.,
800× 1333 is a common setting in a widely used baseline detector [15]. In train-
ing, it usually employs weak augmentation like random resizing. Similar to image
classification, images are also fed into an encoder to extract image features. But
in order to detect objects with various scales, feature maps are collected from
more than one layer of the encoder, for example FPN [26]. In addition to that,
an RoIAlign operator [15] is widely used to extract region features from the
image feature maps to maintain the equivariance of region features, instead of
the average pooling which usually sacrifice equivariance for invariance. In ad-
dition, as the object detector both needs to localize and recognize the objects,
both a cross-entropy loss and a bounding box regression loss are adopted in the
optimization process.
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3.2 A Two-stage Approach

Unlike most of previous works which typically start with a base detector and
transfer the knowledge of this base detector to image classification data using
a multi-instance learning framework, we argue for making a reverse information
flow that transfers knowledge from an image classifier to detection.

The underline reason is that when the number of object categories is large,
the large-vocabulary classification capability is very difficult to be seized. In fact,
300 million images need to be traversed to train a good classifier on ImageNet-
1K using common vision Transformers [8,28]. To train a good classifier on the
large-vocabulary ImageNet-21K dataset, even 4 times longer iterations are re-
quired [28]. The training also relies on strong data augmentation to perform
well. On the other hand, 4 million images with weak data augmentations have
been enough to train a good detector on COCO. The region proposal network
(RPN) trained on COCO, which distinguishes foreground objects with the back-
grounds, has been general enough for common objects to be also effect beyond
the 80 categories annotated in COCO [13].

In this sense, we thus propose a reverse knowledge flow that transfers infor-
mation from a good image classifier to object detection. There are two stages of
training, as shown in Figure 2. In the first stage, a large-vocabulary image clas-
sifier is thoroughly trained. There is a reformulation of previous standard image
classification approach to be aligned well with the object detection framework.
This reformulation facilitates a smooth transfer of the knowledge to the next
stage of training. In the second stage, we join the capabilities of image classifi-
cation and object detection through a simple multi-task learning framework.

In the following, we present the details of these two stages.

Stage I: Image Classification with Reformulation In the first stage, we
reformulate the traditional image classification task to make it as close as possible
to object detection. In standard practice, the image classification is achieved
using a simple linear classification head at the top of the backbone network, while
object detection relies on heavier heads for object localization and classification.

To bridge these two tasks, we have two modifications, firstly, treating the en-
tire image area as a proposal RoI to represent the image and performing RoIAlign
instead of the previous average pooling operator on this RoI; and secondly, tak-
ing the same object classification head in object detection task to replace the
traditional linear head. The reformulation is illustrated in Figure 2(a). With this
reformulation, we can still maintain the advantages of long/fully trained image
classification and strong image augmentations, while have more shared layers
and fewer gaps with the object detection task.

Stage II: A Simple Multi-Task Learning Framework to Combine Ob-
ject Detection and Reformulated Image Classification In the second
stage, we perform a joint training framework for image classification and object
detection. The training pipeline of this stage is illustrated in Figure 2(b).
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Fig. 2. Illustration on two stages of our approach: image classification with reformula-
tion (stage I); joint object detection and reformulated image classification (stage II).

Firstly, the image processing pipeline is made unified between the object de-
tection and the reformulated image classification tasks. Since the image classifier
has been thoroughly trained at the first stage, the image processing pipeline is
leaned to be friendly for the detection task: all images are resized to a large
resolution such as [800, 1333] as a common settings, and weak augmentations
are employed.

Secondly, most modules in architecture of the reformulated image classifi-
cation are shared to the object detection framework, including the backbone,
FPN [26], and the RoI classification head except for the last layer to perform
linear classification. The model weights of these components learnt during the
first stage are used in initialization, with other new layers randomly initialized.

Since there are no background samples on the image classification branch,
we decouple foreground/background classification from object category classi-
fication and regard all samples in image classification datasets as foreground.
Specifically, we introduce an extra foreground/background classifier on top of
the classification head to align it to the classification branch of the object detec-
tor,

Sfg
i = sigmoid(f(xi)), (1)

in additional to the original C-class classifiers,

Sc
i = softmax(gc(xi)), (2)

Ŝc
i = softmax(ĝc(xi)), (3)
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where f(·) ∈ Rd×1, g(·) ∈ Rd×C , and ĝ(·) ∈ Rd×Ĉ are linear classifiers of
the shared foreground/background classification, category classification on the
detection dataset, and category classification on the classification dataset; i is
an RoI index; c is a category index; xi represents the region feature of RoI i.

The final category score for each foreground object corresponding to category
c is:

S′c
i = Sfg

i · Sc
i , Ŝ

′c
i = Sfg

i · Ŝc
i , (4)

and the classification loss is performed on this final score.
In training, the foreground classifier is trained only with detection data, and

the category classification classifiers are trained with both detection and classi-
fication data. Since image classification data is only used for training category
classification, using even the very inaccurate entire image as RoI is sufficient for
training the category classifier. In inference, proposals that overlap with objects
are typically observed to have high scores on this object category, but only the
proposal that is close to the object’s ground-truth box will have higher fore-
ground score, resulting in better overall scores.

Inference Method In inference, we remove the image classification branch,
except that the final linear classifier layer is remained and put on top of the RoI
classification head of the object detection branch. For categories that overlap be-
tween object detection and image classification, we empirically use the weighted
geometric average of scores from two branches:

S′c
i = (S′c

i )
2
3 · (Ŝ′c

i )
1
3 . (5)

For the categories appear in only one dataset, we use the score using the
corresponding classifier to produce the final category score for RoI i.

4 Experiments

4.1 Experimental Settings

We conduct experiments using three setups as shown in Table 1.

Setup S1 The 997 categories intersected between LVIS [14] and ImageNet-
21K [5] are considered, resulting in two tailored datasets noted as LVIS-997 and
IN-997. We divide the categories into a base set and a novel set, respectively,
according to its frequency on LVIS dataset. Specifically, the categories belong
to “common” and “frequent” are set as base classes. The categories belong to
“rare” are set as novel classes. Using this division, the base set involves 720
categories, while the novel set involves 277 categories.

In training, the LVIS-997-base and IN-997 training images are used. In eval-
uation, both the LVIS-997-base and LVIS-997-novel validation set are used. In
addition to the absolute accuracy, the performance gap between LVIS-997-novel
and LVIS-997-base can be a good indicator to evaluate the transferring perfor-
mance of a method. In this setup, Mask R-CNN [15] is used as the base detector.
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Setup S2 The COCO object detection dataset and the ImageNet-1K dataset
are used. The COCO dataset contains 118K training images and 80 object cat-
egories. The ImageNet-1K dataset contains 1.28M training images and 1000 ob-
ject categories. The goal of this setup is to evaluate the performance of weakly
object localization on ImageNet-1K, which are widely used in previous WSOL
literature.

In this setup, we do not map categories of the two dataset, but treat them
as independent sets. In evaluation, we only use the linear classification weights
trained on the ImageNet-1K dataset. In this setup, Faster R-CNN [32] with
FPN [26] is adopted as the base detector.

Setup S3 This setup is used to develop our 21,000-vocabulary detector, as well
as building our evaluation benchmark for large-vocabulary object detection.

The Objects365 [33] object detection dataset and the ImageNet-21K image
classification datasets are used for training. The Objects365 [33] object detec-
tion dataset contains around 1.7 million images, 365 object categories and over
29 million bounding boxes annotations in the training split. The ImageNet-21K
image classification dataset [5] has over 14 million images, covering 21,841 cat-
egories.

For the ImgaeNet-21K dataset, we first divide the dataset into training split
and validation split. Specifically, 5 images of each category are randomly selected
for evaluation. For the classes with images less than 25, we sample 20% of the
images from each class. As some of the categories are rare in ImageNet-21K
(less than 5 images), we exclude them from the validation set. After filtering,
we obtain a benchmarking dataset with 101,625 images and 21,077 categories.
Then we annotate these images with ground-truth bounding boxes. Given an
image and its ground-truth category, we annotate all objects belonging to this
category. For each object, the smallest possible box that contains all visible parts
of the object is annotated. This benchmarking dataset has been made publicly
available to facilitate future research on large-vocabulary object detection.

In addition to evaluating large-vocabulary object detectors, we also verify
whether the proposed framework can serve as a good representation pretraining
method. To this end, we test its fine-tuing performance on the LVIS dataset [14].
We use the full 1,203 object categories for evaluation, which are distributed in
long-tail, that there exists categories that rare with less than 10 training samples.

In this setup, Faster R-CNN [32] with FPN [26] is used as the base detector.
In evaluation, both the metrics of localization accuracy and mAP are included.

Training and implementation details

– First stage. We follow common training recipes for image classification train-
ing. For ResNet architectures, we basically follow [17] to use SGD as the
optimizer, with a base learning rate of 0.1, and a cosine learning rate sched-
uler. The weight decay is set as 1e-4, and the training length is set 100 epoch
(on ImageNet-1K/997). For data augmentation, the random crop and color
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jittering is employed. For vision Transformers such as Swin Transformer, we
follow [40,28] and employ all the regularization and augmentation strate-
gies in [28], including RandAugment [4], Mixup [46], CutMix [44], random
erasing [52] and stochastic depth [18]. The training length is 300 epochs for
ImageNet-1K/997, and 100 epochs for ImageNet-21K.

– Second stage. In this stage, we employ a large jittering augmentation[11] with
a resolution of 1024 × 1024 resolution and a scale range of [0.1, 2.0]. The
random horizontal flipping is also employed. The ratio of detection images
and classification images are set as 1:3 in each iteration. The 3× training
scheduler is conducted for COCO and LVIS. The learning rate is searched
in 3×10−4, 1×10−3, 3×10−3 and the weight decay is 0.05. The loss weight
of the classification branch is searched in 0.01, 0.1 and 1.0.

4.2 Object Detection on LVIS-997-Novel in Setup S1

Table 2 shows the results of our approach compared to previous methods in Setup
S1. We note the previous approaches are built by a different implementation
and training settings than ours, and thus the absolute accuracy numbers are not
directly comparable, for example, the training length of previous methods are
much longer than ours.

Nevertheless, the performance gaps ∆ between APnovel
mask and APmask can act

as a good indicator to evaluate the detectors’ transferring ability from base cate-
gories to novel categories. The proposed approach has marginal AP degradations
when transferred from base categories to novel ones, significantly better than pre-
vious methods. Compared to the variant without reformulation of classification
method, or without Stage I, the performance is all degraded significantly.

These results indicate that our two-stage approach that employs an inverse
information flow from a good classifier to object detection is crucial to seize the
powerful classification capability.

These results also indicates surprising effectiveness of the simple multi-task
learning approach, which has no explicit mechanism to attend to the detailed
foreground and background classification on the image data.

Also note our approach is complementary to previous MIL approaches, by
applying it afterwards the second stage. We will leave this as our future research.

4.3 Object Localization on ImageNet-1K in Setup S2

We evaluate the proposed method on the ImageNet-1K localization benchmark
with the metrics of localization accuracy and GT-Known accuracy. For the lo-
calization accuracy, a predicted box is correct when it satisfies the following two
conditions. First, the predicted class matches the ground truth category. Second,
the predicted box has over 50% IoU with at least one of the ground truth boxes.
GT-Known accuracy assumes that the ground truth category is given and only
requires the predicted box to have over 50% IoU with ground truth boxes.

As summarized in Table 3, our approach outperforms other WSOL meth-
ods by a large margin. Specifically, on the basis of ResNet-50, we achieve the



12 Lin et al.

Table 2. Setup S1 experiments. The comparison of different approaches on LVIS-997-
base and LVIS-997-novel. *denotes that a pre-training model using IN-21K dataset, a
framework of CenterNet2, and a stronger training recipe is used.

method backbone APmask APbase
mask APnovel

mask ∆ (novel, all)

ViLD-ens. [13] ResNet-50 25.5 - 16.6 -8.9
Detic [54] ResNet-50 26.8 - 17.8 -9.0
Detic* [54] ResNet-50 32.4 - 24.6 -7.8

Ours ResNet-50 27.6 29.1 22.8 -4.8
Ours (-reform.) ResNet-50 26.8 28.4 21.8 -5.0
Ours (-stage I) ResNet-50 15.5 16.3 13.0 -2.5

Ours Swin-T 30.4 30.9 28.8 -1.6
Ours Swin-S 35.1 36.5 30.6 -4.5

top-1 localization accuracy of 64.7% and the GT-Known accuracy of 73.8%, also
surpassing previous state-of-the-art methods by a gap of 9.9% and 5.3%, respec-
tively. These results indicate that an additional base object detection datasets
can significantly benefit the weakly supervised object localization.

Also note by this experiment, we do not aim for fair comparisons, but to
encourage the use of this settings for object localization, rather than the previous
settings that use only image classification data.

The ablation with the variant that does not use a reformulated image classifi-
cation model, or the on that does not involve this first stage of training, indicates
the importance of our design.

4.4 21K-Category Object Detection in Setup S3

We benchmark the performance of 21,000-vocabulary object detection with the
ImageNet-21K localization dataset. In addition to the localization accuracy, we
evaluate different methods with the challenging Average Precision (AP) metric.

To test with the AP metric, we allow predicting up to 100 detection boxes
per image and adopt a confidence score threshold of 1e-4 for our approach. We
compare our approach with Detic [54], which is concurrent with our approach,
and is the only paper to develop a detector that can handle more than 20,000
object categories. For Detic, we find that a small confidence score threshold like
1e-6 would still hurt the performance and thus set it as 0.

As shown in Table 4, the proposed method achieves a Top-1 localization
accuracy of 19.2% and AP50 of 6.9%, revealing the difficulty of discriminating
over 21,000 categories. Note that our method outperforms Detic [54] by a large
margin by +17.5% on Top-1 localization accuracy and +5.6% on AP50. Compar-
ing to our approach, Detic has a much worse classification performance on the
21,000-category dataset. This indicates it is crucial to have a reverse information
flow for large-vocabulary object detection, that a large-vocabulary classifier is
well trained first before transferring the knowledge to object detection. We hope
that these results can serve as a baseline for future studies.
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Table 3. Comparison of joint training model with other state-of-the-art methods on
ImageNet-1K validataion set.

Methods Backbones
Loc. Acc GT-Known

Top-1 Top-5 Top-1

CAM [53] VGG16 42.8 54.9 -
CutMix [44] VGG16 43.5 - -
I2C [50] VGG16 48.4 58.5 63.9
SPA [29] VGG16 49.6 61.3 65.1

CAM [53] InceptionV3 46.3 58.2 62.7
SPG [49] InceptionV3 48.6 60.0 64.7
I2C [50] InceptionV3 53.1 64.1 68.5
SPA [29] InceptionV3 52.7 64.3 68.3

CAM [53] ResNet-50 46.2 - -
CutMix [44] ResNet-50 47.3 - -
I2C [50] ResNet-50 54.8 64.6 68.5

TS-CAM [10] DeiT-S 53.4 64.3 67.6

Ours ResNet-50 64.7 69.9 73.8
Ours (-reform.) ResNet-50 60.8 62.1 69.9
Ours (-stage I) ResNet-50 50.4 51.3 71.0

Ours Swin-T 66.5 72.6 73.9
Ours Swin-S 68.3 78.5 75.1

Table 4. Results of the joint training model on ImageNet-21K large-vocabulary object
localization benchmark. Swin-B is adopted as the backbone for both methods. For
Detic[54], we test with the publicly released model Detic C2 SwinB 896 4x IN-21K.

Methods AP50
Loc. Acc

Top-1 Top-5

Detic [54] 1.3 2.7 5.2
Ours 6.9 19.2 19.7

4.5 The Proposed Approach as Pre-training

The proposed framework can also serve as a pre-trained model for down-stream
tasks. To evaluate this, we fine-tune different pre-trained models on LVIS dataset
for 24 epochs using the Faster R-CNN [32] framework. We use the AdamW [19]
optimizer, with the learning rate of 1e-4, the weight decay of 0.05 and the batch
size of 16. Repeat Factor Sampling (RFS) [14] with a factor of 0.001 is utilized
to handle the class imbalance problem in LVIS.

Table 5 summarizes the results of the three methods. Successive training on
classification and detection outperforms classification pre-training by a gap of
3.0% on box AP. This may be due to that the classification pre-trained models
lack the ability to localize, while successive training models somewhat maintain
the classification and localization ability at the same time. However, successive
training methods may suffer from the problem of catastrophic forgetting [20]. In
successive learning, as it would be fine-tuned on the object detection dataset,
the model may only focus on categories of the detection dataset and forget other
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Fig. 3. Visualization of object detection results on LVIS dataset. The rich category
semantics learnt by joint training model makes it easy to transfer to other datasets.

Table 5. Comparison of different pre-training methods on LVIS. IN-21K denotes the
supervised classification model trained on ImageNet-21K. IN-21K → O365 denotes the
successive training of ImageNet-21K classification and Objects365 object detection.

Pre-training AP APr APc APf

IN-21K 35.8 23.6 36.1 40.9
IN-21K → O365 38.8 26.8 38.9 44.0

Ours 40.1 28.8 40.2 45.0

concepts in the classification pre-training. This would limit the model to be
transferred to other datasets with different classes.

The proposed joint training method could address this problem because it
performs supervised classification and object detection in a joint manner. As
shown in Table 5, when compared with the strong baseline of successive training,
the proposed method still has a large performance boost of 1.3% and 2.0% on
AP and APr, respectively. The good performance on rare categories verifies that
the joint training model could learn richer category semantics.

5 Conclusion

In this paper, we propose a simple two-stage approach for large-vocabulary ob-
ject detection. Unlike previous approaches which transfers knowledge from a base
detector to image classification data, we start from image classification and trans-
fer the large-vocabulary capability to object detection. For better transferring,
the image classification problem is reformulated as a special configuration of ob-
ject detection. The joining of two datasets is conducted using a simple multi-task
learning framework in the second stage. Though without sophisticated process to
explicitly attend to region proposals on the image data, the proposed multi-task
learning approach performs rather strongly using three experimental setups.

We also obtained a 21,000-category object detector, built using a combination
of the ImageNet-21K image classification dataset and the Object365v2 object
detection dataset. We also built a new benchmarking dataset for the evaluation
of object detection on large-vocabularies. We hope the simple baseline approach
and evaluation benchmark can ease the future study in this area.
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thousand classes using image-level supervision. In: arXiv preprint arXiv:2201.02605
(2021)

55. Zitnick, C.L., Dollár, P.: Edge boxes: Locating object proposals from edges. In:
European conference on computer vision. pp. 391–405. Springer (2014)


	A Simple Approach and Benchmark for 21,000-Category Object Detection

