# Fine-grained Data Distribution Alignment for Post-Training Quantization (Supplementary Material)

Yunshan Zhong<sup>1,2</sup>, Mingbao Lin<sup>3</sup>, Mengzhao Chen<sup>2</sup>, Ke Li<sup>3</sup>, Yunhang Shen<sup>3</sup>, Fei Chao<sup>2</sup>, Yongjian Wu<sup>3</sup>, Rongrong Ji<sup>1,2\*</sup>

<sup>1</sup>Institute of Artificial Intelligence, Xiamen University.
<sup>2</sup>Media Analytics and Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University. <sup>3</sup>Tencent Youtu Lab.
zhongyunshan@stu.xmu.edu.cn, linmb001@outlook.com, cmzxmu@stu.xmu.edu.cn, {tristanli.sh, shenyunhang01}@gmail.com, fchao@xmu.edu.cn, littlekenwu@tencent.com, rrji@xmu.edu.cn

### 1 More Visualization

#### 1.1 Visualization of MobileNetV1

The visualization of BNS in different layers of pre-trained MobileNetV1 is shown in Fig. S1.



**Fig. S1.** t-SNE visualization (five classes) of BNS in different layers of pre-trained MobileNetV1 on ImageNet. Best viewed in color.

<sup>\*</sup> Corresponding Author

#### 2 Y. Zhong et al.

#### 1.2 Visualization of MobileNetV2

The visualization of BNS in different layers of pre-trained MobileNetV2 is shown in Fig. S2.



**Fig. S2.** t-SNE visualization (five classes) of BNS in different layers of pre-trained MobileNetV2 on ImageNet. Best viewed in color.

#### 2 Time cost

Tab. S1 shows that our FDDA and zero-shot quantization (ZSQ) methods have similar training costs. However, our FDDA performs much better as shown in the paper.

Table S1. Training costs of ZSQ and FDDA for 4-bit ResNet-18.

| DI/ADI   | $\rm ZeroQ/DSG$ | GDFQ         | Qimera/ZAQ | FDDA   |
|----------|-----------------|--------------|------------|--------|
| 9.9 hour | 6.7 hour        | $6.9 \ hour$ | 8.5 hour   | 7 hour |

Table S2. Training costs of PTQ and FDDA for 4-bit ResNet-18.

| AdaQuant | LAPQ       | Bit-Split | BRECQ FDDA      |
|----------|------------|-----------|-----------------|
| 0.1 hour | $1 \ hour$ | 3 hour    | 0.9 hour 7 hour |

Tab. S2 reports more training costs from our FDDA than post-training quantization methods. Nevertheless, our FDDA results in a significant performance increase, especially when quantizing small networks such as MobileNetV1 and

| Training time (hour) | 1     | 3     | 5     | 7     |
|----------------------|-------|-------|-------|-------|
| Acc(%)               | 68.18 | 68.55 | 68.74 | 68.88 |

Table S3. Accuracy over training time for 4-bit ResNet-18.

MobileNetV2 in the paper. Further, we decrease the training costs (smaller training epochs) and Tab. S3 shows the results. Our FDDA (68.18%) still outperforms the SOTA BRECQ (67.94%) under similar training costs (1 hour vs. 0.9 hour). Thus, our FDDA leads to the best performance under the same training cost.

#### 3 Model size and speed

The model size is only related to the specified bits. For example, full-precision ResNet-18 and MobileNetV2 are 11.69MB and 3.5MB, While 4-bit ResNet-18 and MobileNetV2 are 1.47MB and 0.44MB.

After obtaining the quantized model, one can deploy it on hardware with different frameworks depending on the type of hardware. Compared with the full-precision model, the 4-bit model could achieve  $\sim 4 \times$  to  $\sim 8 \times$  speedups in practice. For example, the 4-bit ResNet-18 achieves  $\sim 6x$  speedups on NVIDIA T4 (less than 0.2ms per image). Also, the latency of 4-bit ResNet-18 is  $\sim 53$ ms on FPGA, and  $\sim 600$ ms on mobile ARM CPU [1]. Though our FDDA introduces a generator, it is only used in the training process and no extra parameters and latency are introduced in the inference stage.

4 Y. Zhong et al.

## References

 Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu, F., Wang, W., Gu, S.: Brecq: Pushing the limit of post-training quantization by block reconstruction. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)