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Abstract. Life-long learning aims at learning a sequence of tasks with-
out forgetting the previously acquired knowledge. However, the involved
training data may not be life-long legitimate due to privacy or copyright
reasons. In practical scenarios, for instance, the model owner may wish
to enable or disable the knowledge of specific tasks or specific samples
from time to time. Such flexible control over knowledge transfer, unfortu-
nately, has been largely overlooked in previous incremental or decremen-
tal learning methods, even at a problem-setup level. In this paper, we
explore a novel learning scheme, termed as Learning wIth Recoverable
Forgetting (LIRF), that explicitly handles the task- or sample-specific
knowledge removal and recovery. Specifically, LIRF brings in two inno-
vative schemes, namely knowledge deposit and withdrawal, which allow
for isolating user-designated knowledge from a pre-trained network and
injecting it back when necessary. During the knowledge deposit process,
the specified knowledge is extracted from the target network and stored
in a deposit module, while the insensitive or general knowledge of the
target network is preserved and further augmented. During knowledge
withdrawal, the taken-off knowledge is added back to the target network.
The deposit and withdraw processes only demand for a few epochs of
finetuning on the removal data, ensuring both data and time efficiency.
We conduct experiments on several datasets, and demonstrate that the
proposed LIRF strategy yields encouraging results with gratifying gen-
eralization capability.

Keywords: Life-long learning; Incremental learning; Machine unlearn-
ing; Knowledge transfer

1 Introduction

Life-long learning finds its application across a wide spectrum of domains and
has been a long-standing research task. Its main goal is to update a network to
adapt to new data, such as new instances or samples from a new class, without
forgetting the learned knowledge on the past data. In some scenarios, on the
contrary, we wish to deliberately forget or delete specified knowledge stored in
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Fig. 1. Illustration of the proposed LIRF framework, comprising the knowledge deposit
process and knowledge withdrawal process.

the model, due to privacy or copyright issues. This task, known as, machine un-
learning, has also attracted increasing attentions from the industry and research
community due to its practical value.

Nevertheless, prior attempts in machine unlearning have been mostly focused
on deleting the specified knowledge for good, meaning that once removed, it is
not possible to revert the knowledge back. Despite the absolute IP protection,
such knowledge deletion scheme indeed introduces much inconvenience in terms
of the user control and largely hinders the flexibility of model interaction.

In this paper, we explore a novel learning scenario, which explicitly allows
for the extracted knowledge from a pre-trained networked to be deposited and,
whenever needed, injected back to the model. Such a flexible learning strategy
grants users a maximum degree of freedom in terms of control over task- or
sample-specific knowledge, and meanwhile ensures the network IP protection.
Admittedly, this ambitious goal inevitably leads to a more challenging problem
to tackle, since again we seek a portable modulation of knowledge on and off a
pre-trained network.

To this end, we propose a dedicated scheme, termed as Learning with Recov-
erable Forgetting (LIRF). We illustrate the overall pipeline of LIRF in Fig. 1,
When there is a request for deleting specified knowledge, denoted as Dr (with
Dr preserved), due to for example IP issues, LIRF isolates such knowledge from
the pre-trained original network and stores it in a deposit module; the remaining
network with Dr extracted is then denoted as the target network. When the IP
issue is resolved and the model owner requests to revert the knowledge back
or re-enables Dr, LIRF withdraws the deposited knowledge and amalgamates
it with the target network to produce the recover network. Specifically, during
the knowledge deposit process, we partition the knowledge of the original net-
works, trained using full data, into sample-specific and general part. The former
is deposited to a deposit module consisting of pruned blocks from the original
network, while the latter is preserved in the target network.

Our contributions are therefore summarized as follows.

– We introduce a novel yet practical life-long learning setup, recoverable knowl-
edge forgetting. In contrast to machine unlearning settings that delete spec-
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ified knowledge for good, recoverable forgetting enables knowledge isolation
and recovery from a pre-trained network, which brings in network IP pro-
tection alongside user flexibility and control.

– We develop the LIRF framework that explicitly allows for knowledge de-
posit and withdrawal, to achieve recoverable knowledge forgetting. LIRF is
time- and data-efficient, as the deposit process requires only a few epochs to
finetuning on the specified samples.

– Experimental results have verified the effectiveness of the proposed method,
under various settings including class-incremental learning and machine un-
learning.

2 Related Work

2.1 Life-long Learning

Life-long/online/incremental learning, which is capable of learning, retaining and
transferring knowledge over a lifetime, has been a long-standing research area
in many fields [41, 36, 24]. As the pioneer work, Li et al. [23] propose Learning
without Forgetting (LwF) by using only the new-coming examples for the new
task’s training, while preserving the responses on the existing tasks to prevent
catastrophic forgetting. Peng et al. [29] present to train the hierarchical softmax
function for deep language models for the new-coming tasks. FSLL [25] is pro-
posed to perform on the few-shot setting by selecting very few parameters from
the model. Apart from those works that still need part of the old data, many
researchers are devoted to developing the methods without storing the old data
by synthesizing old data [35, 39] or even without referring to any old data [37, 36,
27]. In addition to the above works that tend to forbid the catastrophic forget-
ting of the old tasks, some researchers [15, 56, 14, 13] pay more attention on the
decremental cases where some features may vanish while feature evolving. Hou
et al. [15] attempt to compress important information of vanished features into
functions of survived features, and then expand to include the augmented fea-
tures in the one-pass learning way. Zhang et al. [56] propose discrepancy measure
for data with evolving feature space and data distribution.

Different from the current researches on life-long learning, we propose the
more flexible learning scheme, which is capable of dealing with both the data
adding and deleting cases.

2.2 Knowledge Transfer

Knowledge transfer aims at transferring knowledge from networks to networks.
Here, we mainly discuss the related works in knowledge distillation [11, 10, 46],
which trains a student model of a compact size by learning from a larger teacher
model or a set of teachers handling the same task. It has been successfully
conducted in deep model compression [53], incremental learning [32], contin-
ual learning [20, 49] and other tasks other than classification [4, 45, 17, 42, 31, 52,
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43, 47, 18]. In addition to the above methods that transfer knowledge from one
network to another, it could happen in plenty forms. Such as for combining or
amalgamating multi-source knowledge, Gao et al. [8] introduce a multi-teacher
and single-student knowledge concentration approach. And in order to handle
multi-task problems in one single network, knowledge amalgamation [48] is pro-
posed to train the student network on multiple scene understanding tasks, lead-
ing to better performance than the teachers. To make it further, Ye et al. [50]
apply a two-step filter strategy to customize the arbitrary task set on TargetNet.
Besides, the multi-stage knowledge transfer is enabled by Yuan et al. [54] to de-
sign a multi-stage knowledge distillation paradigm to decompose the distillation
process.

Knowledge distillation could also be a reliable method to transfer knowledge
from old data to new data, and there are also some distillation-based works [6, 16,
38, 7] for solving the coming new data in life-long learning setting. Cheraghian
et al. [6] address the problem of few-shot class incremental learning by utilizing
the semantic information. Hu et al. [16] derive a distillation method to retain the
old effect overwhelmed by the new data effect, and thus alleviate the forgetting
of the old class in testing.

These knowledge transfer methods transfer knowledge from networks to net-
works, we make the first work to filter and deposit the knowledge.

2.3 Machine Unlearning

The concept of unlearning is firstly introduced by Bourtoule et al. [2] to elim-
inate the effect of data point(s) on the already trained model. Along this line,
Neel et al. [26] give the first data deletion algorithms. To minimize the retrain-
ing time, data removal-enabled forests [3] are introduced as a variant of random
forests that enables the removal of training data. Sekhari et al. [33] initiate a
rigorous study of generalization in machine unlearning, where the goal is to
perform well on previously unseen datapoints and the focus is on both compu-
tational and storage complexity. Gupta et al. [9] give a general reduction from
deletion guarantees against adaptive sequences to deletion guarantees against
non-adaptive sequences, using differential privacy and its connection to max in-
formation. Nguyen et al. [28] study the problem of approximately unlearning a
Bayesian model from a small subset of the training data to be erased. As machine
unlearning is studied for data privacy purpose, Chen et al. [5] firstly study on
investigating the unintended information leakage caused by machine unlearning.

The previous works only consider the data deletion with the optimization
objective of getting the same model as re-training without the deletion data.
The proposed LIRF framework only deleted sample-specific knowledge, which
can be stored for future use.

3 Knowledge Deposit and Withdrawal

The proposed LIRF framework focuses on the class-level life-long problem, in
which the samples from multiple classes may be deposited or withdrawn.
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Fig. 2. The proposed LIRF framework. The knowledge is transferred fully and partially
from the original network to the deposit module and the target network. The recover
network is withdrawn from the target net and the deposit module.

We define our new problem illustrated in Fig. 1. Let D be the full original
dataset, and the original network directly trained on D is donated as T0. In
this problem, each of the learned samples is assigned to either deposit set or
preservation set. Formally,

– Deposit set Dr: A set of samples that should be forgotten at the target
network T , and remembered at the deposit module Tr;

– Preservation set Dr: A set of samples that should be memorized at the
target network (the complement of Dr).

For clarity, we discuss on the case that one deposit set is required for deposit
and withdrawal, which could be definitely generalized to multiple deposit sets.
Definition 1 (Deposit Problem). The Learning with knowledge deposit problem
is defined as follows: Learn two models, one is T : X → Y that should map an
input x to its correct class label y if x ⊂ Dr, while map x to a wrong class label
if x ⊂ Dr; the other one is Tr : X → F that stores the knowledge of set Dr.
Constraints: Only the original network T0 and deposit set Dr are available.
Definition 2 (Withdraw Problem). The Learning with knowledge withdraw

problem is defined as follows: Recover a model ‹T : X → Y that should map an
input x to its correct class label y for both x ⊂ Dr, and x ⊂ Dr. Constraints:
Only the target network T and deposit module Tr are available.

4 Learning with Recoverable Forgetting

The essence of this work is to deposit and withdraw the sample-specific knowl-
edge for the deleted data in the learning with recoverable forgetting way, which,
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we call LIRF framework. LIRF consists of two processes, one is knowledge de-
posit that transfers knowledge from original network to target network and de-
posit module, the other is knowledge withdrawal that recovers the knowledge
back to the recover net. These two processes can be described as:

T0
Deposit−−−−−→

Dr

{T , Tr}
Withdraw−−−−−−→ ‹T , (1)

where T0 is the original network trained on the full set D, T is the target net-
work specified for the task of the preservation set Dr, Tr is the deposit module
that only works as a knowledge container and ‹T is the recover network that is
expected to recover all the prediction capacity of the full data set D.

Now, given the original network T0 and the deposit set Dr, the goal of LIRF is
to learn T , Tr and ‹T , which includes three steps. Firstly, LIRF filters knowledge
out of the original network to get the target net, at the meanwhile, it deposits the
filtered sample-specific knowledge to the deposit module, and finally for recover
request, LIRF withdraws the knowledge from the deposit module to recover net.
Fig. 2 provides an overall sketch of LIRF framework.

4.1 Filter Knowledge out of Target Net

In the process of knowledge deposit, the objective of target net is to remove the
sample-specific knowledge of Dr while maintaining the performance on Dr.

To begin with, we divide the original network T0 into two modules at the

n-th block, which are denoted as T (−n)
0 and T (n−)

0 , respectively. And the target
network is divided in the same way as T = T (−n) ◦T (n−). As has been discussed
in the previous work [21] that upper layers are preferable for transfer in life-long

learning setting, T (n−)
0 is fully transferred to the target network. That is, we fix

the last few blocks (T (n−) = T (n−)
0 ) and expect this transfer configuration to

benefit tasks that share high-level concepts but have low-level feature differences.

Thus, we fully transfer T (n−)
0 to T (n−), and partially transfer T (−n)

0 to T (−n),
as the lower layers of the network contain more sample-specific knowledge.

Sample-specific knowledge removal. This removal is conducted in two as-
pects. One is the logit level that the target network is incapable of making
reliable prediction on the deposit set Dr, the other is the feature level that the
knowledge of Dr can’t be distilled from T . Thus, for each input x ⊂ Dr, we
assign a random label yr, and force T to randomly predict on Dr. And the
loss to maximize attention transfer on the intermediate features is applied to
the output of T (−n), which makes T undistillable for Dr. Thus, the loss Lkr for
knowledge removal is calculated as:

Lkr = Lce

(
T (x), yr

)
− λatLat

(
T (−n)(x), T (−n)

0 (x)
)
, (2)

where λat is the weight, Lce(·, ·) is the cross-entropy loss, and Lat is the filtered
attention distillation loss item [55] that calculates the activated feature-wise
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similarity of the intermediate features:

Lat(F1,F2) =
∥∥∥f( A(F1)

∥A(F1)∥2
)− f(

A(F2)

∥A(F2)∥2
)
∥∥∥2,

A(F) =
C∑
i=1

∥Fi∥2, f
(
a(i)

)
=

®
0 a(i) < ϵ

a(i) otherwise
,

(3)

where Fi ∈ RH×W represents the feature F ∈ RH×W×C with the size ofH×W×
C at depth i, with which, the l2-normalized attention maps are obtained. And
before calculating the attention similarity with Lat, a filter function f is applied
to set 0 to the deactivate regions, which enables the intermediate knowledge
undisillable only for x ⊂ Dr.

The knowledge removal loss Lkr is calculated on the deposit set Dr to fine-

tune T (−n), which is initialized with T (−n)
0 . The former loss item of Lkr enables

the knowledge forgetting in the logit-level, the latter item of Lkr enables the
forgetting in the feature-level, which unlearnsDr from T and removes the privacy
information of Dr.

General knowledge preservation. As is stated in Fig. 1, there are two kinds
of knowledge that need to be preserved by the target network. One is the knowl-
edge coming from the preservation Dr, the other is the general knowledge from
the Dr. Since the target network T is initialized with the original network and
the last few blocks of T keep fixed while fine-tuning, part of the knowledge has

already been preserved by fully transferred from T (n−)
0 to T (n−). In addition

to it, the partial knowledge transfer with filter g is proposed on the Dr-related
knowledge so as to prevent catastrophic forgetting on Dr, which is:

Lkp = Lkd

(
g(

zT (x)

T
), g(

zT0
(x)

T
)
)
, (4)

where Lkd is the KL-divergence loss, T is the temperature, and zT and zT0 are
the output logits of T and T0, respectively. The filter g selects the logits that
correspond to the class of the preservation set, in which way the knowledge is
partially transferred to target net by minimizing Lkp. Note that only the deposit
samples are accessible in the whole LIRF framework, the output probabilities on
the preservation class are thought to be low and may not be enough to maintain
the performance on the preservation set. Thus, we set a higher temperature
weight to transfer more knowledge for the preserved tasks.

4.2 Deposit Knowledge to Deposit Module

The key difference between the proposed LIRF with the traditional unlearning
problem is that we store the sample-specific knowledge to the deposit module,
which is directly vanished in previous unlearning methods. The deposit module
should have two vital characteristics: firstly, it should be withdrawn easily to the
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recover network with the withdrawal request; Secondly, it should be light-weight
to be stored.

To get a better knowledge container, we initialized the deposit module with
the pruned original network:

Tr
initialize←−−−−− Prune

[
T (−n)
0

]
, (5)

where we use the simple ranking method by calculating the sum of its absolute
kernel weights for pruning [22]. The detail of pruning is given in the supplemen-
tary.

Here, the deposit module is designed as the pruned version mainly for the
following purposes: one is for model efficiency that the light-weight deposit mod-
ule is more space-saving for storage (20% parameters of the original network);
the other is for knowledge filtering that pruning would be better described as
‘selective knowledge damage’ [12], where only the activated filters are kept such
that we only deposit the sample-specific knowledge of Dr rather than the whole
knowledge. Also, similar as Lkp, the partial knowledge transfer loss Lpt with the
filter g is applied to augment this sample-specific knowledge by:

Lpt = Lkd

(
g(

zTr◦T (n−)(x)

T
), g(

zT0
(x)

T
)
)
, (6)

where Lkd and T are previously defined in Eq. (4) and the logits produced by
the deposit module are processed by Tr and T (n−). The filter g selects the logits
that correspond to the class of the deposit set, which transfers the Dr-related
knowledge from the original network to the deposit module.

By minimizing the loss Lpt, the sample-specific knowledge is transferred to
the deposit module, at the meanwhile we also finetune Tr to the easy-to-withdraw
module, which means that the knowledge is recoverable for the recover network‹T . Hence the recovered performance on Dr is considered ahead in the deposit
process, which is to minimize the classification loss of the recover net Lre:

Lre = Lce

(‹T (x), y), (7)

where y is the groundtruth label of input x. And the deposit module obtained
here only works for storing the knowledge, which can’t be used as a independent
prediction model. Thus, Dr is much more safer form for storage than the original
images.

4.3 Withdraw Knowledge to Recover Net

Once the knowledge has been successfully deposited, the proposed LIRF frame-
work is completed, where the knowledge can be withdrawn directly without any
fine-tuning, let alone no need for any data.

The recover net is re-organized without fine-tuning, which is in the form as:‹T (x) = g
(
T (x)

)
+ g

(
Tr ◦ T (n−)(x)

)
, (8)
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where the filter functions g and g are doing the selection operation, which are
the same in Eq. (4) and Eq. (6), respectively. Thus, the overall loss function to
update the LIRF framework is:

Lall = Lkr + λkpLkp + λreLre + λptLpt, (9)

where λkp, λpt and λre are the balancing weights. LIRF is trained by minimizing
the overall Lall on the deposit set Dr, where the preservation set Dr doesn’t
participate in the whole process.

More discussions. Note that the optimization objective Lall of knowledge
deposit is different from machine unlearning, which aims at obtaining a target
network that approximates the one trained from scratch with data Dr. In the
proposed LIRF, the knowledge capacity of target net is larger than the network
only trained with Dr, for it contains the general knowledge filtered from the
delete set Dr. And only the sample-specific knowledge that is privacy-related
should be stored in the deposit module. In the process of withdrawal, the recover
network ‹T built in Eq. (7) isn’t forced to approach the original network: ‹T ≠ T0.
Actually the recover network works better than the original network with the
existence of full and partial knowledge transfer.

5 Experiments

5.1 Experimental settings

Datasets. We use three widely used benchmark datasets for life-long learning,
which are CIFAR-10, CIFAR-100 and CUB200-2011 datasets [40]. For CIFAR-10
and CIFAR-100 datasets, we are using input size of 32 × 32. For CUB200-2011
dataset, we are using input size of 256 × 256. In the normal knowledge deposit
and withdrawal setting, the first 30% of classes are selected for the deposit set,
while the rest classes belong to the preservation set.
Training details. We used PyTorch framework for the implementation. We
apply the experiments on the ResNet-18 backbone. For optimizing the target
network and the deposit module, we use stochastic gradient descent with mo-
mentum of 0.9 and learning rate of 0.01 for 20 epochs. We employed a stan-
dard data augmentation strategy: random crop, horizontal flip, and rotation.
For applying distillation, we set T = 10 for CIFAR10 dataset and T = 20 for
CUB200-2011 dataset. For the weights balancing the loss items in Lall, we set
λkp = λpt = λre = 10. For the normal LIRF setting, the pruning rate is set as
50% and the original network T0 is divided into 4 blocks, where the last 2 blocks

as well as the fc layers are formed as T (n−)
0 .

Evaluation metrics. For evaluation, we need to evaluate the performance of
both target net and recover net. For recover net, we use the average accuracy for
the preservation set (Pre Acc.), the average accuracy for the deposit set (Dep
Acc.), the average accuracy for the full set (Avg Acc.). And for target net, we
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use the average accuracy for the preservation set (Pre Acc.) and the the average
accuracy for the deposit set (Dep Acc.) for the deposit set Dr. In addition,
following the setting of LWSF [34], we use the harmonic mean (H Mean) of the
two standard evaluation measures for life-long learning, which is computed by:
HMean = 2·PreAcc·F

PreAcc+F , where the forgetting measure ‘F’ is computed for the
deposit set by the accuracy drop (decrease) before and after knowledge deposit.
For testing the withdrawal performance, all the metrics show better performance
with higher values, which are similar for testing the deposit performance on
target net, except that ‘Dep Acc.’ is better with lower values.

5.2 Experimental Results

Overall performance. Table 1 shows overall performance of knowledge deposit
(target network) and withdrawal (recover network) on CIFAR-10 and CUB200-
2011 datasets. Besides, we compare the proposed LIRF with the ‘Independent’
networks independently trained on the two sub datasets (preservation set and
deposit set) and the ‘Original’ network T0 trained on the full dataset. From
Table 1, several observations are obtained:

– In the original network, the accuracy on preservation set (‘Pre Acc.’) is higher
than the performance trained dependently (‘93.77’ vs ‘92.92’ on CIFAR-10),
which means that there exits the positive knowledge transfer from the deposit
Dr to the preservation Dr. Thus, it is necessary to partial transfer the general
knowledge to the preserved tasks.

– As the accuracy for randomly predicting on CIFAR-10 and CUB200-2011 is
10% and 0.5%, respectively, the ‘Pre Acc.’ while depositing decreases to 15%
and 1.18%. This large accuracy drop demonstrates the logit-level forgetting
of the deposit set in the target net T .

– The recover network gains higher accuracy on both the preservation set and
the deposit set than on the original network, which proves the knowledge
has been augmented in LIRF with the partial and full knowledge transfer,
which demonstrates the discussions in Sec. 4.3,

Sensitive analysis of LIRF. Here we give a deeper analysis of the proposed
LIRF by the ablation study of each loss items in Lall. The comparative results
are applied on, ‘Scratch Train’: train each net with the corresponding set from
scratch; ‘IL Train’: train the target net from scratch and train recover net with
KD loss in the incremental learning setting; Lkr,Lkp,Lpt,Lre are the loss items
defined in the LIRF framework; Lkp[w/oLat] is the loss without the attention
distillation Lat; ‘Prune’ denotes the pruning operation to initialize the deposit
module. The experimental results are displayed in Table 2. As can be observed
from the table: (1) The full setting with all the loss functions and the pruning
strategy achieves almost the best on each metrics. (2) The attention loss item
Lat would not affect the accuracy a lot (‘row 4’ and ‘row 5’), but it is of vital
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Table 1. Experimental results of the proposed LIRF on CIFAR-10 dataset and
CUB200-2011 dataset. For each dataset, we randomly select 30% of classes for deposit
(Dep Set), while the rest is kept in the preservation set (Pre Set).

Dataset Metrics Independent Original Deposit Withdrawal

CIFAR-10 Pre Acc.↑ 92.92 93.77 93.41 94.56
CIFAR-10 Dep Acc. 96.61 94.60 15.00 97.92
CIFAR-10 F↑ - 0 79.60 -
CIFAR-10 H Mean ↑ - 0 85.95 -
CIFAR-10 Avg Acc. ↑ 94.02 94.06 - 95.57

CUB200-2011 Pre Acc.↑ 48.15 50.33 51.64 53.21
CUB200-2011 Dep Acc. 52.73 48.60 1.18 55.89
CUB200-2011 F↑ - 0 47.42 -
CUB200-2011 H Mean ↑ - 0 49.44 -
CUB200-2011 Avg Acc. ↑ 49.52 49.81 - 54.01

Table 2. Experimental results of the ablation study on the proposed LIRF framework.

Method
#Target Net #Recover Net

Pre Acc. ↑ Dep Acc. ↓ Pre Acc. ↑ Dep Acc. ↑ Avg Acc. ↑
Scratch Train 92.92 96.61 93.77 94.60 94.06

IL Train 92.92 96.61 90.87 98.37 93.12
Lkr,Lkp[w/oLat] 93.38 15.55 - - -

Lkr,Lkp[w/oLat],Lpt,Lre 93.25 14.81 94.26 97.03 95.09
Lkr,Lkp,Lpt,Lre 93.25 15.29 94.33 97.07 95.15

Lkr,Lkp,Lpt,Lre+Prune 93.42 14.15 94.55 97.67 95.49

importance to prevent the information leakage, which is discussed in the follow-
ing experiment. (3) The pruning strategy on the deposit module is proved to be
effective since the pruned deposit module can be withdrawn to recover net with
the best Avg Acc.(‘95.49’).

The visualization of the t-SNE plots is depicted in Fig. 3, where the features
on the final layer of original net, target net and recover net are visualized. As
is shown in the figure, both the original net and the recover net can produce
discriminative features on all the 10 categories. And for the target net where the
sample-specific knowledge of the deposit set is removed, the visualization proves
that the target net produces highly discriminative features for the preservation
set while vanishing the predicting capacity for the deposit set. And for visualiza-

tion the t-SNE plots of the deposit module, we construct a network as Tr◦T (n−)
0 .

As can been seen in the right part of the figure, the pruned deposit module pro-
duces more ‘narrow’ features, which are thought as the sample-specific knowl-
edge we want to deposit, proving the ‘selective knowledge damage’ scheme we
mentioned in Sec. 4.2.
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Fig. 3. t-SNE plots of the features obtained from the last layer of the network are
shown. Each color in the t-SNE plot represents one category, where 3 categories are
deposited and the rest 7 categories are in the preservation set (best viewed in color).

Table 3. Experimental results of the knowledge transferability to downstream net-
works. This experiment is conducted on the CIFAR-10 dataset.

Student Distillation
#Original #Target (w/0 Lat) #Target (w Lat)

Pre Acc. Dep Acc. Pre Acc.↑ Dep Acc.↓ Pre Acc.↑ Dep Acc.↓
CNN Logit-based 85.38 86.15 85.97(+0.59) 84.26(-1.89) 85.70(+0.32) 82.75(-3.40)

CNN AT-based 85.27 85.94 86.01(+0.74) 85.72(-0.22) 85.54(+0.27) 81.83(-4.11)

ResNet18 Logit-based 94.26 95.73 94.55(+0.29) 92.70(-3.03) 94.64(+0.38) 91.49(-4.24)

ResNet18 AT-based 94.09 95.24 94.15(+0.06) 94.61(-0.63) 93.85(-0.24) 88.76(-6.48)

Knowledge transferability to downstream networks. We use two evalua-
tions to prove the success of sample-specific knowledge removal in the target net:
One is the accuracy drop on the deposit set, which has been proved in the former
experiments; The other is the knowledge transferability of the deposit set from
the target network to downstream networks, which test the knowledge leakage
risk by knowledge distillation. We have conducted the logit-based distillation
(KL-divergence loss of the output logits) and the attention-based distillation
(MSE loss of the attention maps of the intermediate features). The results are
displayed in Table 3, where we choose the plain CNN and the ResNet-18 as
the student. And we have also evaluated the necessity of the loss item Lat in
Lkr. Note that the groudtruth label of the training data is included for training
with distillation, the accuracy wouldn’t drop largely even when the knowledge
is nontransferable. Thus, from the table, we observe that: (1) The knowledge
transferability on the preservation set is guaranteed on both the original and
the target networks, which is slightly influenced by target net with Lat distilled
in the attention-based way; (2) When training the LIRF framework with loss
item Lat, the knowledge for the deposit set is hard to be distilled both in the
attention-based and the logit-based way. It is much safer with Lat, since without
it, the knowledge of Dr is likely to be leaked through distillation in the attention-
based manner. The privacy protection on the deposit set is further evaluated in
the supplementary tested by the data-free distillation.
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(a) Performance with Different Block Spots (b) Performance with Different Pruning Rates

Fig. 4. The performance on knowledge deposit and withdrawal with different division
block numbers and pruning rates.

The influence of the scale of the deposit module. There are two factors
corresponding to the scale of the deposit module Tr: one is the block number used
to divide the original network; the other is the pruning rate. The influence on this
two factors is depicted in Fig. 4. When the division block number n increases, the
size of the deposit module becomes larger and the fully transferred part of the

original network (T (n−)
0 ) becomes smaller. In this way, the deposit accuracy on

the target network (‘Dep Acc.’ in the first sub figure) and the average accuracy
on the recover network (‘Avg Acc.’ in the second sub figure) drop due to the

less knowledge directly transferred from T (n−)
0 to T , which is also completely

transferred back while recovering. Considering the performance on both target
net and recover net, dividing at n = 2 and n = 3 satisfies the demand, and
we choose n = 2 for smaller knowledge deposit storage. When the pruning rate
increases (the percent of filters to be pruned out), the size of the deposit module
becomes smaller, which doesn’t influence the deposit performance largely (the
third sub figure). The average accuracy on the recover network(‘Avg Acc.’ in
the forth sub figure) increases at first due to selective knowledge damage on the
deposit module, but drops at last due to the limit size for knowledge storage. So
the pruning rate near 50% is a better choice.

Comparing with incremental learning and unlearning. The proposed
LIRF can be also conducted on incremental learning task and the machine un-
learning task. Here we tested LIRF on these two tasks, following the setting
of LWSF [34], whose task is to unlearn several classes of samples while dealing
with the new classes. The individual experiments on incremental learning and
machine unlearning are given in the supplementary. To begin with, we train the
original network with the full dataset and then deposit each sub class into a de-
posit module set, then withdraw each in each incremental step. Table. 4 shows
the comparative results of all the methods, which include: ‘Baseline’ (trained
only with the classification loss), ‘LwF’ [23], ‘EWC’ [19], ‘MAS’ [1], LWSF [34]
and the modified ‘LwF*’ and ‘EWC*’ that are modified to enable partial forget-
ting by the work [34]. The metrics of ‘H Mean’ (H), ‘Pre Acc’ (A) and ‘F’ are
averaged until the last incremental step. The proposed LIRF works almost the
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Table 4. Comparative results of incremental learning and unlearning on CIFAR-100.
Each column represents a different number of classes per incremental step.

# Task:2, # Class:50 # Task:5, # Class:20 # Task:20, # Class:5
H ↑ (A↑, F↑) H ↑ (A↑, F↑) H ↑ (A↑, F↑)

Baseline 55.87 (55.21,56.55) 51.79 (39.66,74.62) 37.88 (25.41,74.41)
LwF 9.02 (74.69,4.80) 17.23 (79.05,9.67) 22.50 (80.74,13.07)
LwF* 54.64 (76.44,42.52) 68.24 (81.32,58.79) 63.62 (82.29,51.85)
EWC 58.58 (56.73,60.55) 48.57 (36.54,72.42) 34.91 (23.07,71.70)
EWC* 57.17 (56.25,58.13) 49.61 (36.58,77.08) 36.90 (23.68,83.52)
EWC*+LwF* 53.51 (77.11,40.98) 67.64 (81.20,57.96) 69.17 (74.11, 64.85)
MAS 55.44 (54.42,56.49) 47.46 (34.89,74.17) 35.26 (23.25,72.96)
MAS+LwF* 56.54 (76.85,44.72) 66.35 (81.83,55.79) 70.83 (74.63,67.41)
LWSF 70.08 (74.89,65.84) 73.21 (72.61,73.83) 71.63 (68.56,75.00)

LIRF 77.69 (79.24,76.19) 73.08 (78.24, 68.56) 79.48 (80.41,78.57)

best among all the listed methods, especially on the incremental performance
(‘A’) which is due to partial and fully knowledge transfer in the framework.

6 Conclusions

In this paper, we study a novel life-long learning task, recoverable knowledge
forgetting. Unlike prior life-long learning tasks that either aim to prevent the
forgetting of old knowledge or delete specified knowledge for good, the investi-
gated setting enables flexible knowledge extraction and inserting, which in turn
largely enriches the user control and meanwhile ensures network IP protection.
To this end, we introduce a dedicated approach, termed as LIRF, where the
innovative operation of knowledge deposit and knowledge withdrawal are pro-
posed. During deposit, the sample-specific knowledge that may lead to privacy
leakage is extracted from original network and maintained in the deposit mod-
ule. Whenever needed, the deposited knowledge can be readily withdrawn to
recover the original model. Experimental results demonstrate the effectiveness
of the proposed LIRF under various settings, including incremental learning and
machine unlearning.
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