
Supplementary material

Jinhyuk Park and Albert No

1 Student Network Design

Instead of applying optimized network architecture search (NAS), we use the
most naive approach to construct the student network fs. Given the pruned net-
work ft(·;wp) (via unstructured pruning), we count the number of nonzero pa-
rameters for each layer. Then, the student network fs is constructed to have the
same number of layers as ft(·;wp), but each layer has reduced number of neurons
(or channels). The number of neurons is specifically chosen to (approximately)
match the number of parameters per layer of the pruned network ft(·;wp).

Consider the case where the original network is a convolutional neural net-
work (CNN), the most common scenario. Recall that the number of parameters
of a convolutional layer is

x× y × cin × cout (1)

where x × y corresponds to the size of the filter, cin is the number of input
channels, and cout is the number of output channels. Note that we ignore the
bias for simplicity. Thus, we can sequentially adjust the number of channels per
layer to match the number of parameters.

More precisely, suppose ft(·;wp) be a pruned CNN with L layers, and n1, . . . , nL

be the number of nonzero parameters in each layer of ft(·;wp). We construct a
new student CNN fs with L layers where the number of channels at each layer
is c0, c1, . . . , cL (c0 is the number of channels of input, which is 3 for an RGB
image). In each i-th layer, the size of filter xi × yi is the same as the pruned
CNN fP . Then, we iteratively match the number of parameters using

ci =

[
ni

xi × yi × ci−1

]
(2)

where [·] is a rounding operator.

2 Jinhyuk Park and Albert No

2 Training Details

In this section, we describe the detailed experimental setting. Table 1 provide hy-
perparameters for regular training, pruning (LR rewinding), and knowledge dis-
tillation (vanilla KD), respectively. Most hyperparameters are common choices in
practice. However, note that we use Nesterov stochastic gradient descent (SGD)
as an optimizer since it is a default optimizer for LR rewinding. This optimizer
may not be an optimal choice, however, our goal is not achieving state-of-the-art
test accuracy but having fair comparison between pruned teacher and unpruned
teacher. For MoblineNetV2, some hyperparameters related to learning rate are
modified to ensure accuracy. Since MobileNetV2 is a student network in our
experiment, we do not prune MobileNetV2.

Table 1: Hyperparameters for training, pruning, and KD.
Training VGG ResNet MobileNetV2

Optimizer nesterov SGD (0.9) nesterov SGD (0.9) nesterov SGD (0.9)
Trainig epochs 200 100 100
Batch size 128 128 256

Learning rate 0.1 0.01 0.05
Learning rate drops [60, 120, 160] [30, 60, 80] [60, 80]

Drop factor 0.2 0.1 0.1
Weight decay 0.0005 0.0001 0.0005

Pruning VGG ResNet -

Pruner LR rewinding LR rewinding -
Iterative pruning rate 0.2 0.2 -

Optimizer nesterov SGD (0.9) nesterov SGD (0.9) -
Post trainig epochs 130 50 -

Batch size 128 512 -
Learning rate 0.1 0.04 -

Learning rate drops [39, 84] [10, 30] -
Drop factor 0.1 0.1 -
Weight decay 0.0002 0.0001 -

Distillation VGG ResNet MobileNetV2

KD vanilla vanilla vanilla
Optimizer nesterov SGD (0.9) nesterov SGD (0.9) nesterov SGD (0.9)
KD epochs 200 100 100

KD batch Size 128 128 256
KD learning Rate 0.1 0.01 0.05
Learning rate drops [60, 120, 160] [30, 60, 80] [60, 80]

Drop factor 0.2 0.2 0.1
Weight decay 0.0005 0.0005 0.0005

Alpha 0.95 0.95 0.95
Temprature 10 10 10

Supplementary material 3

3 Agreement between Teacher and Student

In this section, we investigate the agreement between the teacher and student’s
prediction in various settings. Table 2 presents the agreement as well as students’
accuracy. As we discussed, increment in agreement does not always guarantee
the accuracy. This implies that the teacher may not “teach” the student, but
“help” the student with regularization.

Table 2: Agreement between the teacher and the student.

Teacher
Pruning
Ratio

Student
Student
Accuracy

Agreement

VGG19

None VGG19 73.74 ± 0.20 76.67 ± 0.12
36% VGG19 74.10 ± 0.26 77.70 ± 0.12
59% VGG19 74.26 ± 0.37 77.05 ± 0.16
79% VGG19 74.35 ± 0.10 78.95 ± 0.10

VGG19
36% VGG19-ST36 73.77 ± 0.16 77.09 ± 0.19
59% VGG19-ST59 73.81 ± 0.10 77.42 ± 0.42
79% VGG19-ST79 73.39 ± 0.11 77.61 ± 0.26

ResNet18

None ResNet18 57.97 ± 0.10 73.91 ± 0.31
36% ResNet18 59.39 ± 0.21 72.07 ± 0.12
59% ResNet18 58.99 ± 0.26 70.79 ± 0.16
79% ResNet18 59.33 ± 0.18 70.57 ± 0.60

ResNet18
36% ResNet18-ST36 58.75 ± 0.19 70.59 ± 0.29
59% ResNet18-ST59 57.76 ± 0.31 68.03 ± 0.10
79% ResNet18-ST79 56.23 ± 0.16 64.68 ± 0.27

4 Jinhyuk Park and Albert No

4 Number of Parameters

Table 3 shows the number of parameters in networks. As we intended, we can see
that the number of parameters coincides with the target sparsity of pruned teach-
ers. For example, the number of parameters in VGG19-ST79 is roughly 21%,
matching 79% sparsity. We also count FLOPs using ptflops [1]. Note that the
model with fewer parameters may have more FLOPs. For example, VGG19-ST79
has fewer weights than VGG19-CL1 but has more FLOPs. However, VGG19-
ST79 shows higher test accuracies, indicating the effectiveness of the student
network architecture learned from the pruned teacher.

Table 3: Number of parameters and FLOPs of various models in our exe-
priements.

Datasets Model # of param FLOPs

CIFAR100

VGG19 20.1M 399M
VGG19-CL1 11.0M 158M
VGG19-CL2 9.9M 264M
VGG19DBL 75.4M 1495M

VGG19DBL-ST36 48.2M 1187M
VGG19DBL-ST59 30.8M 916M
VGG19DBL-ST79 15.7M 677M

VGG19-ST36 12.8M 321M
VGG19-ST59 8.2M 248M
VGG19-ST79 4.2M 174M

TinyImageNet

ResNet18 11.3M 149M
ResNet18-ST36 7.3M 114M
ResNet18-ST59 4.7M 91M
ResNet18-ST79 2.4M 66M

VGG16 18.1M 1381M
MobileNetV2 2.5M 27M

4.1 VGG-ST

Table 4 summarizes the number of weights in each layer for VGG19, pruned
VGG19 (79% sparsity), and VGG19-ST79. As we described in SND, We set the
number of filters based on the number of weights per layer of the pruned teacher.
Note that we have modified VGG which has a single fully-connected (FC) layer.
We do not control the number of parameters of FC, which is deterministic based
on the number of filters in the previous layer. Thus, the weight ratio of the fc
layer does not match the pruned network. Other student networks, VGG-ST36
and VGG-ST59, were constructed similarly.

Supplementary material 5

Table 4: Number of parameters in each layer of unpruned VGG19, pruned
VGG19 (79%), and VGG19-ST79.

VGG19 Pruned VGG19 (79%) VGG19-ST79

of weight # of weight ratio(%) # of weight ratio(%)

conv-0 1728 1087 62.91 1080 62.50
conv-1 36864 18102 49.10 17640 47.85
conv-2 73728 50134 68.00 48951 66.39
conv-3 147456 97936 66.42 96903 65.72
conv-4 294912 198189 67.20 196425 66.60
conv-5 589824 381144 64.62 378675 64.20
conv-6 589824 379358 64.32 376992 63.92
conv-7 589824 344924 58.48 342720 58.11
conv-8 1179648 548035 46.46 544680 46.17
conv-9 2359296 749074 31.75 746532 31.64
conv-10 2359296 461873 19.58 461340 19.55
conv-11 2359296 196359 8.32 196020 8.31
conv-12 2359296 99450 4.22 98901 4.19
conv-13 2359296 84433 3.58 83916 3.56
conv-14 2359296 225496 9.56 224532 9.52
conv-15 2359296 328861 13.94 326106 13.82

fc 51200 44546 87.00 12200 23.83

total 20070088 4209001 20.97 4153613 20.70

4.2 VGG-CL

We design VGG19-CL1 and VGG19-CL2 so that the number of parameters of
the model is roughly half of the original unpruned model. For VGG-CL1, we
remove half of filters for each layer except conv-0, conv-1, conv-13, conv-14, and
conv-15 The role of those layers (that are close to either input or output) are
crucial, we keep the whole filters for VGG19-CL1. VGG-CL1 was designed to
check the importance of each layer by remove the channels uniformly across the
layers.

For VGG-CL2, we design a network somewhere between pruned VGG19
(59%) and VGG19-CL1. Similar to VGG19-CL1, another customized network
VGG19-CL2 has the same number of filters in crucial layers (the first and the
last). Thus, conv-15 has 512 filters and an the fully-connected (FC) layer has
51200 weights. On the other hand, the number of channels in other layers are
chosen to match the number of parameters per layer of pruned VGG19 (59%).
The number of filters for each remaining layer was set to approximate the number
of parameters of pruned VGG19 (79%). Table 5 shows the number of parameters
in each layer of VGG19-CL1 and VGG19-CL2.

6 Jinhyuk Park and Albert No

Table 5: Number of parameters in each layer of pruned VGG19 (59%), VGG19-
CL1, and VGG19-CL2.

VGG19 Pruned VGG19 (59%) VGG19-CL1 VGG19-CL2

of weight # of weight ratio # of weight ratio # of weight ratio

conv-0 1728 1210 70.02 1728 100 1728 100
conv-1 36864 22885 62.08 36864 100 22464 60.94
conv-2 73728 59344 80.49 36864 50 62829 85.22
conv-3 147456 118013 80.03 36864 25 127269 86.31
conv-4 294912 242091 82.09 73728 25 251694 85.35
conv-5 589824 487123 82.59 147456 25 493830 83.72
conv-6 589824 490757 83.2 147456 25 504990 85.62
conv-7 589824 452699 76.75 147456 25 475668 80.65
conv-8 1179648 769861 65.26 294912 25 806796 68.39
conv-9 2359296 1281396 54.31 589824 25 1364922 57.85
conv-10 2359296 1064558 45.12 589824 25 1111500 47.11
conv-11 2359296 751546 31.85 589824 25 711000 30.14
conv-12 2359296 435158 18.44 1179648 50 385362 16.33
conv-13 2359296 380092 16.11 2359296 100 339021 14.37
conv-14 2359296 711337 30.15 2359296 100 684297 29.00
conv-15 2359296 903232 38.28 2359296 100 2520576 106.84

fc 51200 49403 96.49 51200 100 51200 100

total 20070088 8220705 40.96 11001536 54.82 9915146 49.40

Supplementary material 7

5 Mismatched Pair of Networks

We apply KD to mixed pair of teacher and student networks. For example,
VGG19-ST36 is a student network that corresponds to pruned VGG19 teacher
with sparsity 36%. In this section, we transfer knowledge from a teacher to a
mismatched student, for example, the pruned VGG19 teacher with 59% sparsity
when the student is VGG19-ST36.

Table 6: Distillation between mismatched pair of teacher and student networks
(VGG19).

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - VGG19-ST36 72.32 ± 0.12

VGG19
None 73.13 VGG19-ST36 73.52 ± 0.20
36% 73.30 VGG19-ST36 73.77 ± 0.16
59% 72.25 VGG19-ST36 73.91 ± 0.15
79% 73.43 VGG19-ST36 74.00 ± 0.20

None - - VGG19-ST59 71.80 ± 0.18

VGG19
None 73.13 VGG19-ST59 73.18 ± 0.10
36% 73.30 VGG19-ST59 73.42 ± 0.24
59% 72.25 VGG19-ST59 73.81 ± 0.10
79% 73.43 VGG19-ST59 73.69 ± 0.27

None - - VGG19-ST79 70.89 ± 0.14

VGG19
None 73.13 VGG19-ST79 72.42 ± 0.16
36% 73.30 VGG19-ST79 72.97 ± 0.17
59% 72.25 VGG19-ST79 73.13 ± 0.09
79% 73.43 VGG19-ST79 73.39 ± 0.11

None - - ResNet18-ST36 56.44 ± 0.26

ResNet18
None 57.75 ResNet18-ST36 57.74 ± 0.22
36% 57.66 ResNet18-ST36 58.75 ± 0.19
59% 57.58 ResNet18-ST36 58.57 ± 0.22
79% 57.32 ResNet18-ST36 58.46 ± 0.18

None - - ResNet18-ST59 55.93 ± 0.32

ResNet18
None 57.75 ResNet18-ST59 56.70 ± 0.35
36% 57.66 ResNet18-ST59 58.20 ± 0.06
59% 57.58 ResNet18-ST59 57.76 ± 0.29
79% 57.32 ResNet18-ST59 57.94 ± 0.20

None - - ResNet18-ST79 54.48 ± 0.53

ResNet18
None 57.75 ResNet18-ST79 55.65 ± 0.24
36% 57.66 ResNet18-ST79 56.66 ± 0.15
59% 57.58 ResNet18-ST79 56.19 ± 0.12
79% 57.32 ResNet18-ST79 56.23 ± 0.16

8 Jinhyuk Park and Albert No

Table 6 shows the result when we mix the teacher and student pair. Although
the student is not designed for the teacher, we can see that the pruned teacher
teaches better than the unpruned teacher.

Supplementary material 9

6 Large Scale Experiments

We conduct a large scale experiment to further justify the proposed algorithm.
Table 7 shows the self distillation result of ResNet50 with and without pruned
teacher. It is clear that distillation from pruned teacher is better than the dis-
tillation from unpruned teacher.

Table 7: Self distillation of ResNet50 with teacher pruning. Teacher “None”
indicates the student is trained without a teacher, while the pruning ratio “None”
means the distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - ResNet50 62.88 ± 0.25

ResNet50

None 62.88 ResNet50 64.54 ± 0.35
36% 62.72 ResNet50 64.86 ± 0.06
59% 62.85 ResNet50 65.21 ± 0.21
79% 63.46 ResNet50 64.97 ± 0.10

Table 8 shows the performance of the proposed compression algorithm on
ResNet50 with TinyImageNet. Similar to our main experiment with ResNet18
models, we also observe the effectiveness of our scheme in the larger model.

Table 8: Performance of the proposed compression algorithm on ResNet50 with
TinyImageNet. ResNet50-ST(X) is the constructed student network based on
the proposed algorithm from X% pruned teacher. Teacher “None” indicates the
student is trained without a teacher, while the pruning ratio “None” means the
distillation from the unpruned teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

None - - ResNet50-ST36 62.24 ± 0.14

ResNet50
None 62.88 ResNet50-ST36 64.11 ± 0.26
36% 62.72 ResNet50-ST36 64.12 ± 0.30

None - - ResNet50-ST59 60.04 ± 0.29

ResNet50
None 62.88 ResNet50-ST59 63.84 ± 0.17
59% 62.85 ResNet50-ST59 63.58 ± 0.29

None - - ResNet50-ST79 58.74 ± 0.06

ResNet50
None 62.88 ResNet50-ST79 62.25 ± 0.46
79% 63.46 ResNet50-ST79 62.84 ± 0.26

10 Jinhyuk Park and Albert No

We also run an experiment with ImageNet, which is larger and realistic
dataset. Table 9 shows the performance of the proposed compression algorithm
on ResNet18 with ImageNet. For the pruning ratio of 36%, the pruned teacher
performs better than the unpruned teacher as we observed in the previous exper-
iments. However, for the pruning ratio of 79%, the pruned teacher is not effec-
tive, mainly because ResNet18 is not sufficiently large for the ImageNet dataset.
This result emphasizes the importance of finding the right pruning ratio for the
teacher.

Table 9: Performance of the proposed compression algorithm on ResNet18 with
ImageNet. The pruning ratio “None” means the distillation from the unpruned
teacher.

Teacher
Pruning
Ratio

Teacher
Accuracy

Student
Student
Accuracy

ResNet18
None 64.90 ResNet18-ST36 60.93
36% 65.41 ResNet18-ST36 61.10

ResNet18
None 64.90 ResNet18-ST79 50.24
79% 64.70 ResNet18-ST79 50.14

References

1. Sovrasov, V.: Flops counter for convolutional networks in pytorch framework (2019),
https://github.com/sovrasov/flops-counter.pytorch/

https://github.com/sovrasov/flops-counter.pytorch/

	Supplementary material

