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A Pseudocodes

A.1 Global Contribution Partial Updating

The magnitude pruning method prunes (i.e., set as zero) weights with the lowest
magnitudes in a model, which often yields a good trade-off between the model
accuracy and the number of zero’s weights [29]. We adapt the magnitude pruning
proposed in [29] to prune the incremental weights δwf . Specially, the elements
with the smallest absolute values in δwf are set to zero (also rewinding), while
the remaining weights are further sparsely fine-tuned with the same learning rate
schedule as training wf .

Algorithm 2: Global Contribution Partial Updating (Prune Incremental
Weights)

Input: weights w, updating ratio k, learning rate {αq}Qq=1 in Q iterations
Output: weights w̃
/* The first step: full updating and rewinding */

Initiate w0 = w;
for q ← 1 to Q do

Compute the loss gradient g(wq−1) = ∂ℓ(wq−1)/∂wq−1;
Compute the optimization step with learning rate αq as ∆wq;
Update wq = wq−1 + ∆wq;

Set wf = wQ and get δwf = wf −w;

Compute cglobal = δwf ⊙ δwf and sort in descending order;
Create a binary mask m with 1 for the Top-(k · I) indices, 0 for others;
/* The second step: sparse fine-tuning */

Initiate δ̃w = δwf ⊙m and w̃ = w + δ̃w;
for q ← 1 to Q do

Compute the optimization step on w̃ with learning rate αq as ∆w̃q;

Update δ̃w = δ̃w + ∆w̃q ⊙m and w̃ = w + δ̃w;

In comparison to traditional pruning on weights, pruning on incremental
weights has a different start point. Traditional pruning on weights first trains
randomly initialized weights (a zero-initialized model cannot be trained due
to the symmetry), and then prunes the weights with the smallest magnitudes.
However, the increment of weights δwf is initialized with zero in Alg. 2, since the
first step starts from w. This implies that pruning δwf has the same functionality
as rewinding these weights to their initial values in w.

B Complexity Analysis

Algorithm 1: Deep Partial Updating. Recall that the total number of weights
vector is denoted as I. In Q optimization iterations during the first step, Alg. 1
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introduces an extra time complexity of O(QI), and an extra space complexity
of O(I) related to the original optimizer. The rest of the first step takes a time
complexity of O(I · log(I)) and a space complexity of O(I) (e.g., using heap
sort or quick sort). In Q optimization iterations during the second step, Alg. 1
introduces an extra time complexity of O(QI), and an extra space complexity
of O(I) related to the original optimizer. Thus, a total extra time complexity is
O(2QI + I · log(I)) and a total extra space complexity is O(I).

Algorithm 2: Global Contribution Partial Updating. Recall that the total
number of weights vector is denoted as I. In Q optimization iterations during
the first step, Alg. 2 does not introduce extra time complexity or extra space
complexity related to the original optimizer. The rest of the first step takes a
time complexity of O(I · log(I)) and a space complexity of O(I) (e.g., using heap
sort or quick sort). In Q optimization iterations during the second step, Alg. 2
introduces an extra time complexity of O(QI), and an extra space complexity
of O(I) related to the original optimizer. Thus, a total extra time complexity is
O(QI + I · log(I)) and a total extra space complexity is O(I).

C Implementation Details

C.1 MLP on MNIST

The MNIST dataset [16] consists of 28×28 gray scale images in 10 digit classes. It
contains a training dataset with 60000 data samples, and a test dataset with 10000
data samples. We use the original training dataset for training; and randomly
select 3000 samples in the original test dataset for validation, and the rest 7000
samples for testing. We use a mini-batch with size of 128 training on 1 GeForce
RTX 3090 GPU. We use Adam variant of SGD as the optimizer, and use all
default parameters provided by Pytorch. The number of training epochs is chosen
as 60 at each round. The initial learning rate is 0.005, and it decays with a factor
of 0.1 every 20 epochs. The used MLP contains two hidden layers, and each
hidden layer contains 512 hidden units. The input is a 784-dim tensor consisting
of all pixel values in each image. We use ReLU as the activation function, and use
a softmax function as the non-linearity of the last layer (i.e., the output layer) in
the entire paper. All weights in MLP need around 2.67MB. Each data sample
needs 0.784KB. The size of MLP equals around 3400 data samples. The used
MLP architecture is presented as, 2×512FC - 10SVM.

C.2 VGGNet on CIFAR10

The CIFAR10 dataset [15] consists of 32× 32 color images in 10 object classes. It
contains a training dataset with 50000 data samples, and a test dataset with 10000
data samples. We use the original training dataset for training; and randomly
select 3000 samples in the original test dataset for validation, and the rest 7000
samples for testing. We use a mini-batch with size of 128 training on 1 GeForce
RTX 3090 GPU. We use Adam variant of SGD as the optimizer, and use all
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default parameters provided by Pytorch. The number of training epochs is chosen
as 60 at each round. The initial learning rate is 0.005, and it decays with a
factor of 0.2 every 20 epochs. The used VGGNet is widely adopted in many
previous compression works [5,28,26], which is a modified version of the original
VGG [33]. All weights in VGGNet need around 56.09MB. Each data sample
needs 3.072KB. The size of VGGNet equals around 18200 data samples. The
used VGGNet architecture is presented as, 2×128C3 - MP2 - 2×256C3 - MP2 -
2×512C3 - MP2 - 2×1024FC - 10SVM.

C.3 ResNet56 on CIFAR100

Similar as CIFAR10, the CIFAR100 dataset [15] consists of 32× 32 color images
in 100 object classes. It contains a training dataset with 50000 data samples,
and a test dataset with 10000 data samples. We use the original training dataset
for training; and randomly select 3000 samples in the original test dataset for
validation, and the rest 7000 samples for testing. We use a mini-batch with
size of 128 training on 1 GeForce RTX 3090 GPU. We use Nesterov SGD with
weight decay 0.0001 as the optimizer, and use all default parameters provided
by Pytorch. The number of training epochs is chosen as 100 at each round. The
initial learning rate is 0.1, and it decays with the cosine annealing schedule. The
ResNet56 used in our experiments is proposed in [10]. All weights in ResNet56
need around 3.44MB. Each data sample needs 3.072KB. The size of ResNet56
equals around 1100 data samples.

C.4 MobileNetV1 on ImageNet

The ImageNet dataset [30] consists of high-resolution color images in 1000 object
classes. It contains a training dataset with 1.28 million data samples, and a
validation dataset with 50000 data samples. Following the commonly used pre-
processing [25], each sample (single image) is randomly resized and cropped into
a 224× 224 color image. We use the original training dataset for training; and
randomly select 15000 samples in the original validation dataset for validation,
and the rest 35000 samples for testing. We use a mini-batch with size of 1024
training on 4 GeForce RTX 3090 GPUs. We use Nesterov SGD with weight decay
0.0001 as the optimizer, and use all default parameters provided by Pytorch. The
number of training epochs is chosen as 150 at each round. The initial learning
rate is 0.5, and it decays with the cosine annealing schedule. The MobileNetV1
used in our experiments is proposed in [12]. All weights in MobileNetV1 need
around 16.93MB. Each data sample needs 150.528KB. The size of MobileNetV1
equals around 340 data samples.

D Full Updating

Settings. In this experiment, we compare full updating with different initializa-
tion at each round to confirm the best-performed full updating baseline. The



Deep Partial Updating 21

{1000, 5000} {5000, 1000} {1000, 1000}

0 2 4 6 8 10 12

Round

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y
 (

m
e
a
n
)

0 10 20 30 40 50

Round

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y
 (

m
e
a
n
)

0 10 20 30 40 50

Round

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y
 (

m
e
a
n
)

Same rand init.

Rand init.

Last round

0 2 4 6 8 10 12

Round

0

0.005

0.01

0.015

A
c
c
u
ra

c
y
 (

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
)

0 10 20 30 40 50

Round

0

0.005

0.01

0.015

A
c
c
u
ra

c
y
 (

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
)

0 10 20 30 40 50

Round

0

0.005

0.01

0.015

0.02

A
c
c
u
ra

c
y
 (

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
)

Fig. 4: Comparing full updating methods with different initialization at each
round.

compared full updating methods include, (i) the model is trained from differ-
ent random initialization at each round; (ii) the model is trained from a same
random initialization at each round, i.e., with the same random seed; (iii) the
model is trained from the weights wr−1 of the last round at each round. The
experiments are conducted on VGGNet using CIFAR10 dataset with different
amounts of training samples {|D1|, |δDr|}. Each experiment runs for three times
using random data samples.

Results. We report the mean and the standard deviation of test accuracy
(over three runs) under different initialization in Fig. 4. The results show that
training from a same random initialization yields a similar accuracy level while
sometimes also a lower variance, as training from different random initialization at
each round. In comparison to training from scratch (i.e., random initialization),
training from wr−1 may yield a higher accuracy in the first few rounds; yet
training from scratch can always outperform after a large number of rounds.
Thus, in this paper, we adopt training from a same random initialization at each
round, i.e., (ii), as the baseline of full updating.

E Number of Rounds for Re-Initialization

Settings. In these experiments, we re-initialize the model every n rounds under
different partial updating settings to determine a heuristic rule to set the num-
ber of rounds for re-initialization. We conduct experiments on VGGNet using
CIFAR10 dataset, with different amounts of training samples {|D1|, |δDr|} and
different updating ratios k. Every n rounds, the model is (re-)initialized again
from a same random model (as mentioned in D), then partially updated in the
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Fig. 5: Comparison w.r.t. the mean accuracy when DPU is re-initialized every
n rounds (n = 1, 5, 10, 20) under different {|D1|, |δDr|} and updating ratio
(k = 0.01, 0.05, 0.1) settings.

next n rounds with Alg. 1. We choose n = 1, 5, 10, 20. Specially, n = 1 means
that the model is partially updated from the same random model every round,
i.e., without reusing the learned knowledge at all. Each experiment runs three
times using random data samples.

Results. We plot the mean test accuracy along rounds in Fig. 5. By comparing
n = 1 with other settings, we can conclude that within a certain number of
rounds, the current deployed model wr−1 (i.e., the model from the last round)
is a better starting point for Alg. 1 than a randomly initialized model. In other
word, partially updating from the last round may yield a higher accuracy than
partially updating from a random model with the same training effort. This
is straightforward, since such a model is already pretrained on a subset of the
currently available data samples, and the previous learned knowledge could help
the new training process. Since all newly collected samples are continuously stored
in the server, complete information about the past data samples is available. This
also makes our setting different from continual learning setting, which aims at
avoiding catastrophic forgetting without accessing (at least not all) old data.

Each time the model is re-initialized, the new partially updated model might
suffer from an accuracy drop in a few rounds. Although this accuracy drop may
be relieved if we carefully tune the partial updating training scheme every time,
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Fig. 6: Comparison w.r.t. the mean accuracy when DPU is re-initialized every
n rounds (n = 1, 5, 10, 20) under different {|D1|, |δDr|} and updating ratio
(k = 0.01, 0.05, 0.1 and full updating k = 1) settings.



24 Zhongnan Qu et al.

this is not feasible regarding a large number of updating rounds. However, we can
simply avoid such an accuracy drop by not updating the model if the validation
accuracy does not increase compared to the last round (as discussed in Sec. 5).
Note that in this situation, the partially updated weights (as well as the random
seed for re-initialization) still need to be sent to the edge devices, since this is
an on-going training process. After implementing the above strategy, we plot
the mean accuracy in Fig. 6. In addition, we also add the related results of full
updating in Fig. 6, where the model is fully updated and is re-initialized every n
rounds from a same random model. Note that full updating with re-initialization
every round (n = 1) is exactly the same as “same rand init.” in Fig. 4 in D.
From Fig. 6, we can conclude that the model needs to be re-initialized more
frequently in the first several rounds than in the following rounds to achieve a
higher accuracy level. The model also needs to be re-initialized more frequently
with a large partial updating ratio k. Particularly, the ratio between the number
of current data samples and the number of following collected data samples has
a larger impact than the updating ratio.

Thus, we propose to re-initialize the model as long as the number of total
newly collected data samples exceeds the number of samples when the model
is re-initialized last time. For example, assume that at round r the model is
randomly (re-)initialized and partially updated from the random model on dataset
Dr. Then, the model will be re-initialized at round r + n, if |Dr+n| > 2 · |Dr|.

F Additional Multi-Round Updating Results

F.1 Experiments on Total Communication Cost Reduction

Settings. In this experiment, we show the advantages of DPU in terms of the
total communication cost reduction, as DPU has no impact on the edge-to-
server communication which may involve sending new data samples collected
on edge nodes. The total communication cost includes both the edge-to-server
communication and the server-to-edge communication. Here we assume that all
samples in δDr are collected by N edge nodes during all rounds and sent to the
server on a per-round basis. In other words, the first stage (see in Sec. 1) is anyway
necessary for sending new training data to the server. For clarity, let Sd denote
the data size of each training sample. During round r, we define the per-node
total communication cost under DPU as Sd · |δDr|/N + (Sw · k · I + Sx(k) · I).
Similarly, the per-node total communication cost under full updating is defined
as Sd · |δDr|/N + Sw · I.

In order to simplify the demonstration, we consider the scenario where N
nodes send a certain amount of data samples to the server in R − 1 rounds,
namely

∑R
r=2 |δDr| (see Sec. 4.2). Thus, the average data size transmitted from

each node to the server in all rounds is
∑R

r=2 Sd · |δDr|/N . A larger N implies a
fewer amount of transmitted data from each node to the server.

Results. We report the ratio of the total communication cost over all rounds
required by DPU related to full updating, when DPU achieves a similar accuracy
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Fig. 7: The ratio, between the total communication cost (over all rounds) under
DPU and that under full updating, varies with the number of edge nodes N .

level as full updating (corresponding to three evaluations in Fig. 2). The ratio

clearly depends on
∑R

r=2 Sd · |δDr|/N , i.e., the number of nodes N . The relation
between the ratio and N is plotted in Fig. 7.

DPU can reduce up to 88.2% of the total communication cost even for a
single node. Single node corresponds to the largest data size during edge-to-serve
transmission per node, i.e., the worst case. Moreover, DPU tends to be more
beneficial when the size of data transmitted by each node to the server becomes
smaller. This is intuitive because in this case the server-to-edge communication
(thus the reduction due to DPU) dominants in the entire communication.

F.2 Impact due to Varying Number of Data Samples and Updating
Ratios

Settings. In this section, we show that DPU outperforms other baselines under
varying number of training samples and updating ratios in multi-round updating.
We also conduct ablations concerning the re-initialization of weights discussed in
Sec. 4.2. We implement DPU with and without re-initialization, GCPU with and
without re-initialization, RPU, and Pruning [29] (see more details in Sec. 5.1)
on VGGNet using CIFAR10 dataset. We compare these methods with different
amounts of samples {|D1|, |δDr|} and different updating ratios k. Each experiment
runs three times using random data samples.

Results. We compare the difference between the accuracy under each partial
updating method and that under full updating. The mean accuracy difference
(over three runs) is plotted in Fig. 8. As seen in Fig. 8, DPU (with re-initialization)
always achieves the highest accuracy. DPU also significantly outperforms the
pruning method, especially under a small updating ratio. Note that we preferred a
smaller updating ratio in our context because it explores the limits of the approach
and it indicates that we can improve the deployed model more frequently with
the same accumulated server-to-edge communication cost. In addition, we also
plot the mean and standard deviation of the absolute accuracy of these methods
(including full updating) in Fig. 9 and Fig. 10, respectively. The dashed curves
and the solid curves with the same color in these figures can be viewed as the
ablation study of our re-initialization scheme. Particularly given a large number
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Fig. 8: Comparison w.r.t. the mean accuracy difference (full updating as the
reference) under different {|D1|, |δDr|} and updating ratio (k = 0.01, 0.05, 0.1)
settings.
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Fig. 9: Comparison w.r.t. the mean accuracy under different {|D1|, |δDr|} and
updating ratio (k = 0.01, 0.05, 0.1) settings.
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Fig. 10: Comparison w.r.t. the standard deviation of accuracy under different
{|D1|, |δDr|} and updating ratio (k = 0.01, 0.05, 0.1) settings.
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of rounds, it is critical to re-initialize the start point wr−1 after several rounds
(as discussed in Sec. 4.2).

G Impacts from Global/Local Contributions

G.1 Ablation Studies of Rewinding Metrics

Settings. We conduct a set of ablation experiments regarding different rewinding
metrics discussed in Sec. 4.1. We compare the influence of the local and global
contributions as well as their combination, in terms of the training loss after
the rewinding and the final test accuracy. We conduct single-round updating
on VGGNet. The initial model are fully trained on a randomly selected dataset
of 103 samples. After adding 103 new randomly selected samples, we conduct
the first step of our approach (see Alg. 1) with all three rewinding metrics, i.e.,
the global contribution, the local contribution, and the combined contribution.
Accordingly, the second step (sparse fine-tuning) is executed. The experiment is
executed over five runs with different random seeds.

Results. The training loss after rewinding (i.e., ℓ(w + δwf ⊙ m)) and the
final test accuracy after sparse fine-tuning (i.e., at w̃) are reported in Tab. 3.
We use the form of mean ± standard deviation. As seen in the table, the
combined contribution always yields a lower or similar training loss after rewinding
compared to the other two metrics. The smaller deviation also indicates that
adopting the combined contribution yields more robust results. This demonstrates
the effectiveness of our proposed metric, i.e., the combined contribution to
the analytical upper bound on loss reduction. Rewinding with the combined
contribution also acquires a higher final accuracy, which in turn verifies the
hypothesis we made for partial updating, a weight shall be updated only if it has
a large contribution to the loss reduction.

Table 3: Comparing training loss after rewinding and the final test accuracy
under different metrics.

k
Training loss at w + δwf ⊙m (Test accuracy at w̃)

Global Local Combined

0.01 3.04± 0.07 (55.0± 0.1%) 2.59± 0.08 (55.6± 0.1%) 2.66± 0.09 (56.5± 0.0%)
0.05 2.51± 0.06 (57.3± 0.2%) 1.80± 0.10 (57.8± 0.1%) 1.67± 0.06 (58.2± 0.1%)
0.1 2.03± 0.05 (58.3± 0.0%) 1.34± 0.08 (59.0± 0.1%) 0.99± 0.03 (59.0± 0.1%)
0.2 1.20± 0.05 (59.0± 0.1%) 0.74± 0.03 (59.6± 0.2%) 0.42± 0.01 (60.1± 0.2%)

G.2 Balancing between Global and Local Contributions

Settings. In Eq.(10), the combined contribution is calculated by adding both
normalized contributions together. However, both normalized contributions may
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have different importance when determining the critical weights. In order to
investigate which one plays a more essential role in the combined contribution, we
introduce another hyper-parameter λ to tune the proportion of both normalized
contributions as

cλ = λ · 1

1T · cglobal
cglobal + (1− λ) · 1

1T · clocal
clocal (11)

Note that the combined contribution c used in the previous experiments is the
same as cλ when λ = 0.5, since only the order matters when determining the
critical weights. We implement partial updating methods with the rewinding
metric cλ under different values of λ. We compare these methods under updating
ratios k = 0.01, 0.05, 0.1 and different {|D1|, |δDr|} settings on VGGNet using
CIFAR10 dataset, and with the re-initialization scheme described in Sec. 4.2.
Each experiment runs three times using random data samples.

Results. To clearly illustrate the impact of λ, we compare the difference between
the accuracy under partial updating methods with various λ and that under full
updating. The mean accuracy difference (over three runs) are plotted in Fig. 11.
As seen in Fig. 11, λ = 0.5 always obtains the best performance in general,
especially when the updating ratio is small. Thus, in the following experiments,
we fix this hyper-parameter λ as 0.5. In other words, the combined contribution
is chosen as

cλ(λ = 0.5) = 0.5 · 1

1T · cglobal
cglobal + 0.5 · 1

1T · clocal
clocal (12)

which has exactly the same functionality as Eq.(10). Note that it may be possible
to manually find another hyper-parameter λ that achieves better performance in
certain cases. However, setting λ as 0.5 already yields a satisfactory performance,
and can avoid meticulous and computationally expensive hyper-parameter tuning
in a large number of updating rounds.

G.3 Number of Updated Weights across Layers under Different
Rewinding Metrics

Settings. To further study the impact of adopting different rewinding metrics,
we show the distribution of updated weights across layers in this section. We
implement partial updating methods with three rewinding metrics (i.e., the
global contribution, the local contribution, and the combined contribution, see in
Sec. 4.1) on VGGNet using CIFAR10 dataset. We compare these methods with
different updating ratios k under {|D1|, |δDr|} = {1000, 1000}. All methods start
from the same randomly initialized model, and are re-initialized with this random
model according to the proposed scheme in Sec. 4.2. To study the distribution of
updated weights along all rounds, we let the model partially updated in every
round even if the model accuracy may degrade for a few rounds due to the
re-initialization.

Results. We plot the number of updated weights across all layers along rounds,
under updating ratio k = 0.01, 0.05, 0.1 in Fig. 12, Fig. 13, and Fig. 14, respectively.
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Fig. 11: Comparison w.r.t. the mean accuracy difference (full updating as the
reference) under λ = 0.5, 0.1, 0.3, 0.7, 0.9. The chosen settings are updating ratios
k = 0.01, 0.05, 0.1, {|D1|, |δDr|} = {1000, 1000}, {1000, 5000}, {5000, 1000}.



32 Zhongnan Qu et al.

We also plot the corresponding test accuracy along rounds in Fig. 15. Generally,
the metric of local contribution updates more weights in the first several layers
and the last layer while with a large variance along rounds. On the contrary, global
contribution selects more weights in the last several layers (until the penultimate
layer) to update. Combined contribution (the sum of normalized local/global
contribution) achieves a more robust and balanced distribution of updated weights
across layers than other contributions. It also results in the highest accuracy level
especially under a small updating ratio. Intuitively, local contribution can better
identify critical weights w.r.t. the loss during training, while global contribution
may be more robust for a highly non-convex loss landscape. Both metrics may
be necessary when selecting weights to rewind. Note that the proposed combined
contribution is not the simple averaging of both local and global contribution.
For example, in “layer 6” of Fig. 14, the number of updated weights by combined
contribution already exceeds the other two metrics.

H Quantizing and Encoding

Settings. The updates could also be compressed through quantization and/or
encoding to reduce the communication cost. In this set of experiments, we show
these compression techniques (i.e., quantization and encoding) are orthogonal
to our DPU. [9] proposed that certain types of quantization and encoding could
be applied in addition to pruning without hurting the accuracy. Following the
compression pipeline in [9], the resulted sparse updating from our DPU could also
be further quantized and Huffman-encoded. The overall compression pipeline in
each round is summarized as follows, (i) a partial updating (also sparse updating)
is generated from our DPU; (ii) these updates are quantized into 8-bit for each
layer, i.e., each layer’s non-zero values share 256 centroids; (iii) the quantized
updates are Huffman-encoded; (iv) the server sends the encoded updates, the
code books (for Huffman-encoding and quantization), as well as the indices to
edge devices.

We implement DPU (with re-initialization see in Sec. 4.2), DPU+Q+E,
pruning (a state-of-the-art pruning method proposed in [29] see in Sec. 5.2),
and pruning+Q+E, to verify that applying Q+E in addition does not bring
extra accuracy loss. Here, Q stands for the quantization step in (ii), and E
stands for the encoding step in (iii). We test on VGGNet using CIFAR10 dataset
under {|D1|, |δDr|} = {1000, 1000}, {1000, 5000}, and {5000, 1000}. Note that
the updating ratio k is set to 0.01, also the most critical case. Each experiment
runs three times using random data samples.

Results. We plot the mean and standard deviation of test accuracy (over three
runs) of these methods in Fig. 16. In addition, we also add the baseline of full
updating (FU) in the figures for comparison. The dashed curves and the solid
curves with the same color can be viewed as the ablations of with/without quanti-
zation and Huffman-encoding, respectively. The results reveal that applying these
quantization and encoding techniques does not bring performance degradation
for both pruning methods and our deep partial updating schemes. Therefore, the
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Fig. 12: Number of updated weights across all layers (VGGNet) when adopting
different rewinding metrics (updating ratio k = 0.01).
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Fig. 13: Number of updated weights across all layers (VGGNet) when adopting
different rewinding metrics (updating ratio k = 0.05).
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Fig. 14: Number of updated weights across all layers (VGGNet) when adopting
different rewinding metrics (updating ratio k = 0.1).
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Fig. 15: The test accuracy of partial updating methods with different rewinding
metrics (updating ratio k = 0.01, 0.05, 0.1).

size of transmitted data could be further reduced by quantizing and/or encoding
the partial updates resulted from DPU. We report the ratio between the data size
of server-to-edge transmission under these above methods and that under full
updating in Tab. 4. Note that the reported ratios are the mean values averaged
over all settings in Fig. 16. Particularly, in comparison to full updating, our
DPU+Q+E can reduce the size of transmitted data by 145×, i.e., 99.31%, while
achieving a similar accuracy level.

Table 4: The ratio of communication cost (server-to-edge) over all rounds related
to full updating.

Method DPU DPU+Q+E Pruning Pruning+Q+E

Ratio 0.0177 0.0069 0.0174 0.0068
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Fig. 16: Verifying the orthogonality between DPU (and pruning) and other
compression techniques, namely quantization (Q) and Huffman-encoding
(E). The chosen settings are updating ratio k = 0.01, {|D1|, |δDr|} =
{1000, 1000}, {1000, 5000}, {5000, 1000}.


