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A Clarify the performance gain of multi-stage classification more
than feature evolution loss.

The performance gain of feature evolution loss seems limited because EXP-3 is con-
ducted based on EXP-2. To better illustrate the performance gain of the two modules,
we apply feature evolution regularization without multi-stage classification obtaining
a performance of 94.96% with 0.46 GMACC on CIFAR-10 and 74.94% with 0.46
GMACC on CIFAR-100. The result shows that the feature evolution regularization does
contributes much to the gain.

B Sensitivity analyses on hyper-parameters α, β, and γ.

We study parameters on CIFAR-10 based on ResNet-110 and show the grid search
results in Table 1.

Table 1: Parameter Ablation Study on α, β, and γ

study on α study on β study on γ

α Acc. (%) GFLOPs β Acc. (%) GFLOPs γ Acc. (%) GFLOPs

0.6 94.32 0.46 0.1 93.49 0.44 1e-5 95.06 0.46
0.8 94.67 0.46 0.3 94.76 0.46 1e-4 95.22 0.46
1.0 95.22 0.46 0.5 95.22 0.46 1e-3 94.33 0.42
1.2 94.75 0.47 0.7 95.03 0.45 1e-2 93.59 0.38
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C Comparison of the result variants with other methods.

As shown in Table 2, we run the following four methods five times under the same
settings: 0.4(±0.03)GFLOPs, based on ResNet-110.

Table 2: Result variants Comparison.
Methods ConvAIG [32] Skip-Net [41] CoDiNet [35] SP-Net

CIFAR-10 94.22±0.11 93.86±0.07 94.35±0.13 95.09±0.04

CIFAR-100 72.86±0.17 72.41±0.12 74.13±0.26 75.02±0.06

D Visualization on samples or metrics of how feature map changes
with/without feature evolution loss.

First, we visualize the feature map changes in Fig. 1. Second, we measure the average
KL-div in Fig. 2. of features from adjoining stages in epochs. A smaller value means a
stable evolution.
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Fig. 1: Visualization on feature changes across the network

E Specifying the routers used in Dynamic ResBlocks.

We also show the structure of the router in Fig. 3.

F Experiments on other dynamic network backbones.

In principle, our method can facilitate dynamic backbones that assign a router to each
computational block. We conduct the proposed method on three relevant networks in
Table 3.
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Fig. 2: Metric on feature changes across the network.

Table 3: Experiments on other backbones.
CIFAR-10 CIFAR-100

Methods ConvAIG CoDiNet RDI-Net ConvAIG CoDiNet RDI-Net

w/o. 94.24 94.47 95.10 72.90 72.90 74.31

with 94.97(0.73) 94.96(0.49) 95.16(0.06) 74.92(2.02) 74.18(1.28) 74.77(0.46)

G How do prior methods fix the instability issues?

First, pre-training or warm-up the network. SkipNet [41] proposes a supervised pre-
train phase. BlockDrop [38] and RDI-Net [34] apply uniform sampling warm-up strate-
gies. Second, data augmentation for similar samples. CoDiNet [35] utilizes self-supervised
augmentations for each sample. RDI-Net [34] also measure the distance between sam-
ples and regularizes the corresponding inference paths.

H The instability may come from a bad router of pathways instead
of the ‘unstable feature evolution’.

The instability in dynamic inference network are two-fold. First, the unstable training
phase might come from the unpowerful routers. To solve this problem, we use the aux-
iliary module for guided paths and labels. Second, the unstable feature evolution across
network is also prone to instability. We invite the evolution loss to fix this issue.
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Fig. 3: The structure of the router in use


