
EdgeViTs: Competing Light-weight CNNs on
Mobile Devices with Vision Transformers

Supplementary Materials

Junting Pan1⋆, Adrian Bulat2, Fuwen Tan2, Xiatian Zhu2, Lukasz Dudziak2,
Hongsheng Li1, Georgios Tzimiropoulos2,3 and Brais Martinez2

1 The Chinese University of Hong Kong
2 Samsung AI Cambridge

3 Queen Mary University of London

A Computing Complexity

We calculate the computational cost of spatial context modeling involved in
our proposed LGL bottleneck. We omit point-wise operations for simplicity as
the key difference is on the spatial modeling part. Let us assume an input
X ∈ Rh×w×c where h, w, c denotes the height, the width, and the channel
dimension, respectively. The cost of the local aggregation is O(k2hwc), where
k2 is the local group size. By selecting one delegate out of r2 tokens with r the
sub-sampling rate, the complexity of our Sparse Global Self-Attention is then

O(h
2w2

r4 c). Finally, the local propagation step takes a cost of O(r2hwc). Putting

all these together we have a total cost of LGL is O(k2hwc + h2w2

r4 c + r2hwc).
When comparing with the cost of a standard multi-head self-attention O(h2w2c),
we can see that our LGL significantly reduces the computation overhead when
k ≪ h,w; and r > 1. In our experiments, for simplicity we set k = 3, and r to
(4,2,2,1) for the four stages.

B Implementation Details

In Algorithm 1, we provide Pytorch Style pseudo-code for all the build blocks
of our EdgeViTs. All variants of EdgeViTs can be built upon these components
according to the schematic overview (Fig. 2a of the main paper), and the model
configuration parameters (Table 1a. of the main paper).For more details with
the ablation studies in the main paper, we have replaced or removed one of these
blocks with the details given below.

(1) In Table 4a, for the case of w/o LA, we aim to test the importance of
separate local and global context modeling. Thus we remove both LocalAgg and
GlobalSparseAttn, and instead use the Spatial-Reduced Self-Attention4 intro-
duced in PVT [7], resulting in a single Self-Attention Block for both local and

⋆ Work done during an internship at Samsung AI Cambridge.
4 https://github.com/whai362/PVT/blob/v2/classification/pvt v2.py#L54-L126

https://github.com/whai362/PVT/blob/v2/classification/pvt_v2.py#L54-L126


2 Pan. et al.

global context modeling. For the case of LA(LSA) we simply replace LocalAgg

with Local-grouped Self-Attention5 introduced in [1].
(2) In Table 4b, we replace the default sampler (Center) withAvg andMax

functions which can be implemented with AvgPool2d() and MaxPool2d() in Py-
torch [4], respectively. Note, for both cases the kernel size is set to sample rate.

(3) In Table 4c, in the case of w/o LP, we replace our GlobalSparseAttn

with Spatial-Reduce Self-Attention from PVT [7], but different from w/o LA, we
keep the LocalAgg. For the case of LP(Bilinear), the LocalProp is instantiated
as a bilinear interpolation function (Upsample(mode=‘bilinear’) in Pytorch).

Note, the number of layers for each of these variants is down-scaled to
have 0.5GFLOPs for fair comparison.

C Accuracy-Speed Pareto-Optimal Models

In order to facilitate the Accuracy vs. Speed interpretation. We identify pareto
optimal models when comparing trade-off between accuracy and latency [2]. In
our context, the accuracy-latency pareto-optimal models are defined as those
upon which no other models can improve in either accuracy or latency without
degrading other metrics. As shown in Fig. ??, our EdgeViTs are well comparable
with best efficient CNNs [5,3,6], whilst significantly dominating over all prior ViT
counterparts. Specifically, EdgeViTs are all pareto-optimal in both trade-offs.

Fig. 1. Accuracy/Latency and Accuracy/Energy trade off on ImageNet-1K.
Note that, all three variants of our EdgeViTs are pareto-optimal, which are highlighted
with amber cercle. Testing device: Samsung Galaxy S21 (latency), Snapdragon 888
Hardware Development Kit (energy).

5 https://github.com/Meituan-AutoML/Twins/blob/main/gvt.py#L32-L71

https://github.com/Meituan-AutoML/Twins/blob/main/gvt.py#L32-L71


EdgeViTs: Efficient Transformers 3

Model AP
(%)

CPU (s) Energy
(J)

Efficiency
(%/msW)

PVTv2-B0 37.2 1.34±0.05 3.50±0.77 0.011
ResNet18 31.8 0.58±0.02 2.22±0.35 0.014
PVTv1-Tiny 36.7 1.91±0.18 4.40±0.94 0.008
PVTv2-B1 41.2 2.81±0.26 5.29±1.49 0.008

EdgeViT-XXS 38.7 0.59±0.02 2.02±0.58 0.019
EdgeViT-XS 40.6 0.90±0.03 2.89±0.66 0.014
EdgeViT-S 43.4 1.88±0.05 4.36±1.06 0.010

Table 1. Detection Efficiency. Input size: 800× 800

Model mIoU
(%)

CPU (s) Energy
(J)

Efficiency
(%/msW)

PVTv2-B0 37.2 0.35±0.01 1.10±0.30 0.034
ResNet18 32.9 0.23±0.01 1.03±0.20 0.032
PVTv1-Tiny 35.7 0.49±0.02 1.63±0.32 0.022
PVTv2-B1 42.5 0.75±0.03 2.13±0.82 0.020

EdgeViT-XXS 39.7 0.19±0.01 0.71±0.11 0.056
EdgeViT-XS 41.4 0.31±0.01 1.11±0.28 0.037
EdgeViT-S 45.9 0.52±0.02 1.73±0.36 0.027

Table 2. Segmentation Efficiency. Input size: 512× 512

D Efficiency in detection/segmentation

This work proposes a genetic transformer-based network and demonstrate its
efficacy when used as the backbone in detection/segmentation. We provide a
evaluation by measuring only the inference time, energy and efficiency of the
backbones for detection/segmentation. As shown in Tab. 1 and 2, EdgeViTs
demonstrate higher efficiency compared to the baselines.



4 Pan. et al.

Algorithm 1 EdgeViTs Building Blocks, PyTorch-like Code

class LocalAgg():
def __init__(self, dim):

self.conv1 = Conv2d(dim, dim, 1)
self.conv2 = Conv2d(im, dim, 3, padding=1, groups=dim)
self.conv3 = Conv2d(dim, dim, 1)
self.norm1 = BatchNorm2d(dim)
self.norm2 = BatchNorm2d(dim)

def forward(self, x):
"""
[B, C, H, W] = x.shape
"""
x = self.conv1(self.norm1(x))
x = self.conv2(x)
x = self.conv3(self.norm2(x))
return x

class GlobalSparseAttn():
def __init__(self, dim, sample_rate, scale):

self.scale = scale
self.qkv = Linear(dim, dim * 3)
self.sampler = AvgPool2d(1, stride=sample_rate)
kernel_size=sr_ratio
self.LocalProp = ConvTranspose2d(dim, dim, kernel_size, stride=sample_rate, groups=dim

)
self.norm = LayerNorm(dim)
self.proj = Linear(dim, dim)

def forward(self, x):
"""
[B, C, H, W] = x.shape
"""
x = self.sampler(x)
q, k, v = self.qkv(x)

attn = q @ k * self.scale
attn = attn.softmax(dim=-1)
x = attn @ v

x = self.LocalProp(x)
x = self.proj(self.norm(x))
return x

class DownSampleLayer():
def __init__(self, dim_in, dim_out, downsample_rate):

self.downsample = Conv2d(dim_in, dim_out, kernel_size=downsample_rate, stride=
downsample_rate)

self.norm = LayerNorm(dim_out)

def forward(self, x):
x = self.downsample(x)
x = self.norm(x)
return x

class PatchEmbed():
def __init__(self, dim):

self.embed = Conv2d(dim, dim, 3, padding=1, groups=dim)

def forward(self, x):
return x + self.embed(x)

class FFN():
def __init__(self, dim):

self.fc1 = nn.Linear(dim, dim*4)
self.fc2 = nn.Linear(dim*4, dim)

def forward(self, x):
x = self.fc1(x)
x = GELU(x)
x = self.fc2(x)
return x



EdgeViTs: Efficient Transformers 5

References

1. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins:
Revisiting the design of spatial attention in vision transformers. Advances on Neural
Information Processing Systems (2021)

2. Deb, K.: Multi-objective optimization. In: Search methodologies, pp. 403–449.
Springer (2014)

3. Howard, A., Pang, R., Adam, H., Le, Q.V., Sandler, M., Chen, B., Wang, W., Chen,
L., Tan, M., Chu, G., Vasudevan, V., Zhu, Y.: Searching for MobileNetV3. In: IEEE
International Conference on Computer Vision (2019)

4. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An imperative style, high-performance deep learning library. In: Advances
on Neural Information Processing Systems (2019)

5. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: In-
verted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision
and Pattern Recognition (2018)

6. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning (2019)

7. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: PVTv2: Improved baselines with pyramid vision transformer. Computational
Visual Media (2022)


