
Learning to Weight Samples for Dynamic
Early-exiting Networks:
Supplementary Materials

The organization of the supplementary material is as follows. We first in-
troduce the detailed experiment setting in Sec. 1, including the datasets, model
configuration, hyper-parameter selection and training details. Next, we provide
the anytime prediction results of ImageNet in Sec. 2. Finally, the ablation studies
of the weight prediction network (WPN) design are presented in Sec. 3.

1 Experimental Setup

1.1 Datasets

CIFAR-10 and CIFAR-100 [6] contain 10 and 100 classes of natural scene ob-
jects, respectively. Both datasets contain 50,000 training images and 10,000 test
images. Each image has a resolution of 32× 32 pixels. ImageNet [2] contains 1.2
million training images and 50,000 validation images in 1000 classes. Following
[4], we use the basic data augmentation for CIFAR-10, CIFAR-100 and Ima-
geNet. The long-tailed CIFAR dataset [1], unlike CIFAR and ImageNet, does
not have a well-balance class distribution. It reduces the number of training
samples in each class based on an exponential function N ′

c = Ncµ
c, µ ∈ (0, 1),

where c is the class index, and Nc is the original training sample number.

1.2 Model Configuration

MSDNet. We follow the model configurations in [3]. For the CIFAR dataset,
we use MSDNet with three different scales (32× 32, 16× 16, 8× 8). The trained
MSDNets have {5, 7} classifiers, where their depths are {15, 28}, respectively.
The kth classifier is attached to the (

∑k
i=1 i)

th layer. On ImageNet, the MSDNet

has four scales, with the kth classifier attaching on the (s× k + 3)
th

layer (k =
1, ..., 5). The hyper-parameter s controls the total depth and the location of each
classifier of the network, and is set as 4, 6 and 7 to get models with different sizes.

RANet. We use the same model structure proposed in [9]. In the main paper,
we conduct experiments on two RANets. They both have three scales but have
three and four base features, respectively. Detailed configuration is as follows:

Model-C-1: The sizes of three base features are 32 × 32, 16 × 16, 8 × 8.
Three sub-networks respectively corresponding to the base features have 6, 4, 2
convolutional blocks. We use the linear growth step mode to control the number
of layers in each block, which means the number of layers in a block is added 2
to the previous one, and the base number of layers is 2. The channel numbers

2

in these base features are 16, 32, 64, which are input channels numbers for
different sub-networks. The growth rates of the three sub-networks are 6, 12, 24.
The Model-C-1 has 6 classifiers in total.

Model-C-2: The sizes of four base features are 32×32, 16×16, 16×16, 8×8.
These four sub-networks respectively corresponding to these base features have
8, 6, 4, 2 convolutional blocks. Linear growth step mode is used to control the
depth of each block. The number of input channels and growth rates are 16, 32,
32, 64 and 6, 12, 12, 24, respectively. The Model-C-2 has 8 classifiers in total.

1.3 Hyper-parameter selection

For the budget controlling variable q, we hold out an extra validation set from
the training data and tune q on it. We find 0.75 work well for CIFAR, and
0.5, 0.75 work well for ImageNet. The magnitude of perturbation δ (Sec. 3.2,
weighted classification loss) is set as 0.8 on CIFAR and 0.3 on ImageNet.

1.4 Training details

We use the stochastic gradient descent (SGD) to train the backbone parameters
Θf . The batch sizes are set to 1024 and 2048 for CIFAR and ImageNet, respec-
tively. The learning rate for backbone parameters starts with 0.1×batch size/64
for CIFAR and 0.1×batch size/256 for ImageNet, decaying with a cosine shape.
We use a momentum of 0.9 and a weight decay of 1 × 10−4 for both datasets.
All the models (with or without our weighting mechanism) are trained for 300
epochs on CIFAR and 100 epochs on ImageNet.

Following [8], we adopt Adam [5] with an initial learning rate of 1×10−4 to
optimize our WPN Θg. The interval I of updating WPN in Algorithm 1 is set
to 1 and 100 for CIFAR and ImageNet, respectively.

In each iteration of our meta-learning algorithm, a mini-batch is chunked into
two parts: one is used to train the backbone parameters Θf , while the other part
is used for training the WPN parameters Θg. We then exchange the two parts
to keep the total number of training iterations equal to the baseline strategy. For
experiments of IMTA compatibility, we follow the pretrain-finetuning process in
IMTA [7], and our meta-learning procedure is included in both phases.

Experiments on CIFAR-10, CIFAR-100 and long-tailed CIFAR are conducted
on Nvidia Geforce RTX 2080 Ti GPUs, and the training for ImageNet models
is conducted on Nvidia Tesla A100 GPUs.

2 Anytime prediction results of ImageNet

The ImageNet results in dynamic inference setting have been presented in the
paper. In this section, the anytime prediction results of different sized MSDNet
are shown in Tab. 1, Tab. 2, Tab. 3, respectively.

Title Suppressed Due to Excessive Length 3

Table 1: Anytime prediction results of a MSDNet with k = 4 on ImageNet
Exit index 1 2 3 4 5

Params (×106) 4.24 8.77 13.07 16.75 23.96
Mul-Add (×109) 0.34 0.69 1.01 1.25 1.36

Accuracy
MSDNet 59.00 66.78 70.12 71.42 72.90
Ours 59.54 (↑0.54) 67.22 (↑0.44) 71.03 (↑0.91) 72.33 (↑0.91) 73.93 (↑1.03)

Table 2: Anytime prediction results of a MSDNet with k = 6 on ImageNet
Exit index 1 2 3 4 5

Params (×106) 4.24 10.78 17.84 24.58 38.68
Mul-Add (×109) 0.34 0.92 1.52 1.99 2.19

Accuracy
MSDNet 58.69 68.75 72.35 73.59 74.63
Ours 60.05 (↑1.36) 69.13 (↑0.38) 73.33 (↑0.98) 75.19 (↑1.60) 76.30 (↑1.67)

Table 3: Anytime prediction results of a MSDNet with k = 7 on ImageNet
Exit index 1 2 3 4 5

Params (×106) 4.24 11.89 20.58 29.16 47.54
Mul-Add (×109) 0.34 1.06 1.81 2.42 2.68

Accuracy
MSDNet 58.81 69.45 73.18 74.32 75.35
Ours 59.24 (↑0.43) 69.65 (↑0.20) 73.94 (↑0.76) 75.66 (↑1.34) 76.72 (↑1.37)

Table 4: Ablation study of the WPN size on CIFAR-100.

Exit index 1 2 3 4 5

Multi-Add (×106) 6.86 14.35 27.54 41.71 58.48

Top-1 Acc

Baseline 61.12 63.60 69.00 71.32 72.51

d=1, w=10 62.06 65.28 70.19 71.47 72.77
d=1, w=100 63.10 66.21 69.36 71.66 72.98
d=1, w=500 62.61 65.71 69.14 72.12 73.36
d=1, w=1000 63.06 66.07 68.60 72.10 73.25
d=2, w=500 62.95 65.88 69.17 71.56 73.18
d=4, w=500 63.13 66.09 69.41 71.96 73.06

4

3 More Ablation Studies

WPN design. For a given k-exit model, the input and output dimensions of the
WPN is fixed as k. We conduct ablation studies of the WPN depth (the number
of hidden layers, d) and width (the number of neurons of the hidden layer, w)
on CIFAR-100. Note that our default setting in the paper is d=1 and w=500
(for a 5-exit model). The results in Table 4 demonstrate that the performance
is relatively stable as long as the WPN is not too small. The gain mainly comes
from the overall meta-learning paradigm and our novel meta objective.

References

1. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: CVPR (2019)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

3. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-scale
dense networks for resource efficient image classification. In: ICLR (2018)

4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
6. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.

(2009)
7. Li, H., Zhang, H., Qi, X., Yang, R., Huang, G.: Improved techniques for training

adaptive deep networks. In: ICCV (2019)
8. Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., Meng, D.: Meta-weight-net:

Learning an explicit mapping for sample weighting. In: NeurIPS (2019)
9. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution Adaptive

Networks for Efficient Inference. In: CVPR (2020)

	Learning to Weight Samples for Dynamic Early-exiting Networks: Supplementary Materials

