
AdaBin: Improving Binary Neural Networks
with Adaptive Binary Sets

Zhijun Tu1,2 , Xinghao Chen2(�) , Pengju Ren1(�) , and Yunhe Wang2

1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University
tuzhijun123@stu.xjtu.edu.cn, pengjuren@xjtu.edu.cn

2 Huawei Noah’s Ark Lab
{zhijun.tu, xinghao.chen, yunhe.wang}@huawei.com

1 Appendix

In this section, we demonstrate the proof of weight equalization, conduct a de-
tailed analysis of complexity for our proposed AdaBin, visualize the feature map
and weight KL divergence, provide more experimental results, explain the dif-
ference of the binary methods among AdaBin and previous BNNs for weights
and activations and show the updating process of the center and distance in
activation optimization.

1.1 The proof of Weight Equalization

The Kullback-Leibler divergence (KLD) of real-valued distribution and binary
distribution can be represented as Eq. 1.

DKL(Pr||Pb) =

∫
x∈w&wb

Pr(x)log
Pr(x)

Pb(x)
dx, (1)

where the Pr(x) and Pb(x) denote the probability distributions of real-valued
weights and binarized weights. Under the assumption that the binarized data
follows the Bernoulli distribution [11], there are only two items left to calculate
the KLD, then we can get:

DKL = Pr(wb1)log
Pr(wb1)

Pb(wb1)
+ Pr(wb2)log

Pr(wb2)

Pb(wb2)
. (2)

As the real-valued weight follows a bell-shaped distribution and the both sides
are symmetrical on the center (position of mean value), we can set the Pr(wb1) =
Pr(wb2) = p, and Pb(wb1) = Pb(wb2) = 0.5, then we can further infer as follow:

DKL = plog
p

0.5
+ plog

p

0.5
= 2p× log2p.

(3)

� Corresponding author

https://orcid.org/0000-0001-8740-7927
https://orcid.org/0000-0002-2102-8235
https://orcid.org/0000-0003-1163-2014
https://orcid.org/0000-0002-0142-509X

2 Z. Tu et al.

In order to find the optimal solution, we take the derivative of DKL with respect
to p and set it to zero:

∗p = 2−
1

ln 2−1 ≈ 0.1839. (4)

Since there is no convinced formula of weight distribution for neural networks, it
is difficult to determine the αw accurately. However, the weight is widely believed
to roughly obey a Laplace distribution [8] or a Gaussian distribution [1,2,13].
Given that the weight w follows a standard Laplace (w ∼ La(0, 1)) or Gaussian
distribution (w ∼ N (0, 1)), which means that βw = 0, then we can get:

fGussian(w
1 = 1.245) = fLaplace(w

2 = 1) ≈ 0.1839 ≈ ∗p. (5)

As show in Fig. 1, these two distributions are similar, and the w1 and w2 are
close to the standard deviations of these two distributions, which are 1.414 and
1, respectively.

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

f(
x)

*p=0.1839

Standard Gussian
Standard Laplace

Fig. 1: The distributions of standard Laplace and standard Gaussian. The blue
dash lines and the red dash lines represent the position of w1 and w2, the blue
vertical solid line and the red vertical solid line represent the position of the
standard deviations of these two distributions, and the green vertical solid lines
represent the estimated αw.

Therefore, we estimate that αw is on the position of the standard deviation
of w with the consideration of these two distributions in this special case. And as
the training goes on, the center of weights is shifted and the shape of distribution
gets changed, to make the best distribution-match, the αw should be changed
with the real-valued weight, thus we estimate it as the standard deviation of the
weights at each step during training:

αw =
∥w− βw∥2√
c× k × k

. (6)

AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets 3

Our proof relies on a rough assumption that the distribution of weights is
similar to Gaussian distribution and Laplace distribution, which is not very strict
but the deduced solution works well in practice.

1.2 Analysis on the Complexity

The goal of BNNs is to replace the computationally expensive multiplication and
accumulation with XNOR and BitCount operations, therefore, we will elaborate
on how to accelerate our AdaBin in this section.

Binary Convolution With simple linear transformation, our method can also
be accelerated with bit-wise operations:

y =Conv(ab,wb)

y =Conv(αa × ba + βa, αw × bw + βw)

=αaαwConv(ba, bw) + αaβwConv(ba, I) + αwβaConv(bw, I) + βaβw

=αaαw(ba ⊙ bw) + αaβw

∑
ba + F (w),

(7)

where

F (w) = αwβa

∑
bw + βaβw.

I is the identity matrix with the same shape as weights. As shown in Eq. 7,
we get three terms in the convolution with our binary method. The first term
is the same as the previous BNNs, the accumulation of the second only needs
to accumulation for one output channel, which can be replaced by BitCount,
and the third term can be pre-computed in the inference process for that it has
nothing to do with the input data.

Parameters and Operations Since the new method involves more full-
precision scalars compared with conventional BNN methods, here we will thor-
oughly analyze the memory usage and computational complexity of the proposed
method and other binarization methods with the same neural architecture. Fol-
lowing the analysis method of [2,5,9,12,15], we can get the parameters of previ-
ous BNNs and AdaBin as Eq. 8.

Paramspre = c× n× k × k + 32× n,

Paramsadabin = c× n× k × k + 2× 32× n+ 2,
(8)

where the c denotes the channel number of input data, n and k are the filter
number and kernel size of weights. And the operations of previous BNNs and

4 Z. Tu et al.

AdaBin can be obtained in Eq. 9:

OPspre =
BOPspre

64
+ FLOPspre

=
c× n× k × k × w′ × h′

64
+ n× w′ × h′,

OPsadabin =
BOPsadabin

64
+ FLOPsadabin

=
(c× n× k × k × w′ × h′ + oc× w′ × h′)

64
+ 2n× w′ × h′,

(9)

where h′ and w′ denote the height and width of weights, the BOPs include the
bit-wise XNOR and BitCount, the FLOPs denote the floating point multiplica-
tion and accumulation.

Complexity on Single Convolution Layer We fix the parameters as pre-
vious BNNs [12]: n = c = 256, k = 3, w′ = h′ = 14, the comparison results
are illustrated in Table 1. We can see that our method only increases 2.74%
operations and 1.37% parameters, which are negligible compared to the total
complexity, and AdaBin could achieve 60.85× acceleration and 31× memory
savings in theory, which is similar to the previous BNNs.

Method BOPs (M) FLOPs (M) OPs (M) Params (Mbit) Acceleration Memory Saving

Full Precision 0 115.61 115.61 18.88 1× 1×
Previous BNNs 115.61 0.05 1.85 0.598 62.46× 32×
AdaBin (Ours) 115.65 0.10 1.90 0.606 60.85× 31×

Table 1: Efficiency Analysis of single convolution layer for different methods.

Complexity on ResNet-18 To further prove the efficiency of our proposed
AdaBin, we also calculate the parameters and operations of the complete ResNet-
18 structure with different input resolutions, and compare with some classical
binary neural networks, such as BNN [3], XNOR-Net [12], IR-Net [11], and
ReActNet [9]. As show in Table 2, our method only increase 3.5% operations
than IR-Net, but obtain 1.6% accuracy improvement on CIFAR-10 dataset. And
we exceed the ReActNet by 0.9% on ImageNet with only extra 2.5% operations.
Besides, our method only increases less than 1% memory footprint compared to
other methods, which is much negligible to the total complexity.

Speed-Accuracy In addition, we test the inference speed of ResNet-18 and
ResNet-34 with the proposed AdaBin, BiRealNet[10] and ReCU[16] on a 1.5GHz

AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets 5

Dataset Resolution Method
BOPs
(×109)

FLOPs
(×108)

OPs
(×108)

Params
(×108 bit)

Top-1 (%)

CIFAR-10 32 × 32 × 3

Full-Precision 0 5.63 5.63 3.58 94.8
BNN [3] 0.55 0.16 0.24 0.17 -
XNOR-Net [12] 0.55 0.17 0.26 0.18 -
IR-Net [11] 0.55 0.17 0.25 0.18 91.5
AdaBin (Ours) 0.56 0.17 0.26 0.18 93.1

ImageNet 224 × 224 × 3

Full-Precision 0 18.12 18.12 3.74 69.6
BNN [3] 1.68 1.21 1.47 0.34 42.2
XNOR-Net [12] 1.68 1.41 1.67 0.34 51.2
IR-Net [11] 1.68 1.37 1.63 0.34 58.1
ReActNet [9] 1.68 1.37 1.63 0.34 65.5
AdaBin (Ours) 1.69 1.41 1.67 0.34 66.4

Table 2: Efficiency Analysis of ResNet-18 for different methods.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0.0

0.1

0.2

0.3

0.4

K
ul

lb
ac

k-
L

ei
bl

er
 d

iv
er

ge
nc

e XNOR-Net IR-Net AdaBin

Fig. 2: The Kullback-Leibler divergence of weight binarization for each layer on
ResNet-20. Following the previous BNNs [10,11,14], the first convolution and
last full-connected layers are kept in 32-bit.

ARM core using the Bolt framework3, respectively, as shown in Fig. 3b. Specif-
ically, our proposed AdaBin achieves quite similar latency with previous BNNs,
BiRealNet and ReCU, but with much better classification accuracy on ImageNet.
Besides, The second term of Eq. 7 actually could be accelerated by BitCount op-
eration, but the Bolt framework is not optimized for this, which brings additional
latency and could be optimized for better speed.

1.3 Visualization

Visualization on activations. We visualize the activation with different
methods in the Fig. 1b of the full paper. As we can see, real-valued activa-
tions contain a lot of feature details. However, the activations binarized by sign
function will result in a large blank area and lose much feature information in
some cases, which fails to facilitate the learning of features for the current layer.
In contrast, AdaBin could retain much texture feature of real-valued activa-
tions, and enable the binary neural networks to perform adequate learning and
efficiently update parameters during training.

3 https://github.com/huawei-noah/bolt

6 Z. Tu et al.

Networks Methods W/A Top-1 (%) Top-5 (%)

ResNet-18

Full-Precision 32/32 69.6 89.2
SQBWN [4]

1/32

58.4 81.6
BWN [12] 60.8 83.0
HWGQ [7] 61.3 83.2
BWHN [6] 64.3 85.9
IR-Net [11] 66.5 86.8

AdaBin (Ours) 68.0 87.9

ResNet-34
FP 32/32 73.3 91.3

IR-Net [11]
1/32

70.4 89.5
AdaBin (Ours) 71.0 89.6

(a) Results on ImageNet

50 75 100 125 150 175 200 225 250
Latency (ms)

58

60

62

64

66

68

To
p-

1
Ac

cu
ra

cy
 (%

)

R-34

R-18

BiReal-Net
ReCU
AdaBin (Ours)

(b) Speed-accuracy tradeoff.

Table 3: (a) Comparison with state-of-the-art methods on ImageNet. W/A de-
notes the bit width of weights and activations. (b) Accuracy vs. Latency on
ImageNet datasets.

Visualization on weights. We use different methods to extract the weights
of the ResNet-20 structure on the CIFAR-10 dataset, and calculate the Kullback-
Leibler divergence between the real-valued distribution and the binarized distri-
bution for each layer. As shown in Figure 2, Using our proposed AdaBin can
significantly reduce the Kullback-Leibler divergence compared to XNOR and
IR-Net, which justifies the motivation of our method. It also demonstrates that
AdaBin could make the binary weights best match the real-valued weights, which
help to improve the feature extraction capacity of the binary convolution kernel.

1.4 More Experimental Results

To further demonstrate the effectiveness of our AdaBin, we evaluate it on
ResNet-18 and ResNet-34 with 1-bit weights and 32-bit activations on the Im-
ageNet dataset. Table 3a shows that AdaBin achieves 68.0% and 71.0% Top-1
accuracy, which surpasses the IR-Net by 1.5% adn 0.6%, and close the perfor-
mance gap between binary neural networks and real-valued networks.

1.5 Comparison with Previous BNNs

To demonstrate the difference of binary methods between our AdaBin and pre-
vious BNNs, we plot the binarization process of several methods for weights and
activations.

The weight binarization of XNOR-Net [12] is the most common method in
binary neural networks as shown in Fig. 3a, which extracts the ℓ1-norm of real-
valued weights (denoted as α) to recover the information of binarized weights.
XNOR-Net proves that this method could minimize the quantization error with
the constraint that the binary values of wb must be a pair of opposite numbers,
which could define as α× {−1,+1}. To get the largest information entropy and
smallest quantization error, IR-Net [11] first normalizes the weights, forces w into

AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets 7

wstd, and then binarizes the wstd to {−α,+α} just like XNOR-Net as shown in
Fig. 3b. Although IR-Net could obtain the best information entropy, the bi-
narized weights can not match the distribution of initial real-valued weights.
Besides, the optimal scale α is calculated based on wstd, which is also not op-
timal for initial real-valued weights. Fig. 3c shows our proposed AdaBin, which
removes the restriction of {−α,+α}. AdaBin obtains the analytic solution of
binary values wb1 and wb1, which could get a much better match between bi-
nary weights and initial real-valued weights regardless of how the distribution of
weights change during training. It is clear that AdaBin could truly minimize the
Kullback-Leibler divergence of real-valued weights and binarized weights. Sign

−α +α0

w
wb

(a) XNOR

−α +α0

w
wstd

wb

(b) IR-Net

wb1 wb20

w
wb

(c) AdaBin

�� ���

a
ab

(d) sign

�� ���

a
aReAct
ab

(e) ReActNet

ab1 ab20

a
ab

(f) AdaBin

Fig. 3: The binarization process for weights and activations of different methods.
The first row represents the weights, and the second row represents the activa-
tions.

function is the most common technique for binarizing activations to either +1
or -1 as shown in Fig. 3d, which is hardware-friendly but provides rough feature
maps. To enable explicit learning of the distribution shift, ReActNet [9] proposes
the ReAct sigh function (RSign) to replace the sigh function but still binarize
the activations to either +1 or -1 as shown in Fig. 3e. However, we argue that
the offset and amplitude are still important for binarized activations to retain
more information of initial real-valued activations. Therefore, the fixed binary
set {−1,+1} cannot provide diverse feature maps and thus limits the feature rep-
resentation. Fig. 3f shows the activation binarization of our proposed AdaBin,
we remove the restriction of the fixed set {−1,+1}, and expand the binary val-
ues to arbitrary values, which could retain more texture feature of real-valued
activation (as shown in Fig. 1b of section 4.4) compared to sign function.

8 Z. Tu et al.

Fig. 4: Updating of center βa and distance αa during training using ResNet-20
structure on CIFAR-10 dataset.

Overall, the binary methods for weights and activations of AdaBin are much
different from previous BNNs, and could significantly enhance the performance
of binary neural networks.

1.6 The updating of αa and βa

To prove the efficiency of the gradient-based optimization method for activation
binarization, we visualize the center βa and distance αa of different epoch during
training. As shown in Fig. 4, we set the initial values of center and distance to 0
and 1, so that the initial binary quantizer is equivalent to the sign function. Then
these two parameters of different layers are dynamically updated via gradient
descent-based training, and converge to the adaptive center and distance values,
which is much different from the unified use of the sign function in the previous
BNNs.

AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets 9

References

1. Baskin, C., Liss, N., Schwartz, E., Zheltonozhskii, E., Giryes, R., Bronstein, A.M.,
Mendelson, A.: Uniq: Uniform noise injection for non-uniform quantization of neu-
ral networks. ACM Transactions on Computer Systems (TOCS) 37(1-4), 1–15
(2021)

2. Chen, H., Wang, Y., Xu, C., Shi, B., Xu, C., Tian, Q., Xu, C.: Addernet: Do we
really need multiplications in deep learning? In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1468–1477 (2020)

3. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

4. Dong, Y., Ni, R., Li, J., Chen, Y., Zhu, J., Su, H.: Learning accurate low-bit deep
neural networks with stochastic quantization. arXiv preprint arXiv:1708.01001
(2017)

5. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features
from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2020)

6. Hu, Q., Wang, P., Cheng, J.: From hashing to cnns: Training binary weight net-
works via hashing. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. vol. 32 (2018)

7. Li, Z., Ni, B., Zhang, W., Yang, X., Gao, W.: Performance guaranteed network
acceleration via high-order residual quantization. In: Proceedings of the IEEE in-
ternational conference on computer vision. pp. 2584–2592 (2017)

8. Lin, M., Ji, R., Xu, Z., Zhang, B., Chao, F., Xu, M., Lin, C.W., Shao, L.: Siman:
Sign-to-magnitude network binarization. arXiv preprint arXiv:2102.07981 (2021)

9. Liu, Z., Shen, Z., Savvides, M., Cheng, K.T.: Reactnet: Towards precise binary
neural network with generalized activation functions. In: European Conference on
Computer Vision. pp. 143–159. Springer (2020)

10. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: Enhanc-
ing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In: Proceedings of the European conference on com-
puter vision (ECCV). pp. 722–737 (2018)

11. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and back-
ward information retention for accurate binary neural networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
2250–2259 (2020)

12. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European conference on
computer vision. pp. 525–542. Springer (2016)

13. Rennie, J.: On l2-norm regularization and the gaussian prior (2003)
14. Wang, P., He, X., Li, G., Zhao, T., Cheng, J.: Sparsity-inducing binarized neural

networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34,
pp. 12192–12199 (2020)

15. Wang, Y., Xu, C., You, S., Tao, D., Xu, C.: Cnnpack: Packing convolutional neural
networks in the frequency domain. In: NIPS. vol. 1, p. 3 (2016)

16. Xu, Z., Lin, M., Liu, J., Chen, J., Shao, L., Gao, Y., Tian, Y., Ji, R.: Recu: Reviving
the dead weights in binary neural networks. arXiv preprint arXiv:2103.12369 (2021)

	AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets

