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Abstract. This paper studies the Binary Neural Networks (BNNs) in
which weights and activations are both binarized into 1-bit values, thus
greatly reducing the memory usage and computational complexity. Since
the modern deep neural networks are of sophisticated design with com-
plex architecture for the accuracy reason, the diversity on distributions
of weights and activations is very high. Therefore, the conventional sign
function cannot be well used for effectively binarizing full-precision values
in BNNs. To this end, we present a simple yet effective approach called
AdaBin to adaptively obtain the optimal binary sets {b1, b2} (b1, b2 ∈ R)
of weights and activations for each layer instead of a fixed set (i.e.,
{−1,+1}). In this way, the proposed method can better fit different dis-
tributions and increase the representation ability of binarized features. In
practice, we use the center position and distance of 1-bit values to define a
new binary quantization function. For the weights, we propose an equal-
ization method to align the symmetrical center of binary distribution to
real-valued distribution, and minimize the Kullback-Leibler divergence
of them. Meanwhile, we introduce a gradient-based optimization method
to get these two parameters for activations, which are jointly trained in
an end-to-end manner. Experimental results on benchmark models and
datasets demonstrate that the proposed AdaBin is able to achieve state-
of-the-art performance. For instance, we obtain a 66.4% Top-1 accuracy
on the ImageNet using ResNet-18 architecture, and a 69.4 mAP on PAS-
CAL VOC using SSD300.

Keywords: Binary Neural Networks, Adaptive Binary Sets

1 Introduction

Deep Neural Networks (DNNs) have demonstrated powerful learning capacity,
and are widely applied in various tasks such as computer vision [27], natural
language processing [3] and speech recognition [22]. However, the growing com-
plexity of DNNs requires significant storage and computational resources, which
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Fig. 1: (a) Comparisons with state-of-the-art methods. With a little extra compu-
tation, the proposed AdaBin achieves better results for various architectures such
as ResNet, MeliusNet [5] and ReActNet [33]. (b) Visualization for activations of
2nd layer in ResNet-18 on ImageNet. Real denotes real-valued activations, Sign
and AdaBin denote the binary methods of previous BNNs and ours.

makes the deployment of these deep models on embedded devices extremely
difficult. Various approaches have been proposed to compress and accelerate
DNNs, including low-rank factorization [44], pruning [10,19], quantization [12],
knowledge distillation [11,23] and energy-efficient architecture design [9], etc.
Among these approaches, quantization has attracted great research interests for
decades, since the quantized networks with less bit-width require smaller mem-
ory footprint, lower energy consumption and shorter calculation delay. Binary
Neural Networks (BNNs) are the extreme cases of quantized networks and could
obtain the largest compression rate by quantizing the weights and activations
into 1-bit values [18,37,41,43]. Different from the floating point matrix operation
in traditional DNNs, BNNs replace the multiplication and accumulation with
bit-wise operation XNOR and BitCount, which can obtain an about 64× ac-
celeration and 32× memory saving [37]. However, the main drawback of BNNs
is the severe accuracy degradation compared to the full-precision model, which
also limits its application to more complex tasks, such as detection, segmentation
and tracking.

According to the IEEE-754 standard, a 32-bit floating point number has
6.8× 1038 unique states [1]. In contrast, a 1-bit value only has 2 states {b1, b2},
whose representation ability is very weak compared with that of the full-precision
values, since there are only two kinds of the multiplication results of binary values
as shown in Table 1a. To achieve a very efficient hardware implementation, the
conventional BNN method [13] binarizes both the weights and the activations
to either +1 or -1 with sign function. The follow-up approaches on BNNs have
made tremendous efforts for enhancing the performance of binary network, but
still restrict the binary values to a fixed set (i.e., {−1,+1} or {0,+1}) for all the
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Table 1: The illustration on the feature representation ability of different binary
schemes. The a represents the binarized input and the w represents binarized
weights, respectively. ab1, ab2,wb1,wb2 ∈ R, which are not restricted to fixed
values for different layers.

layers. Given the fact that the feature distributions in deep neural networks are
very diverse, sign function can not provide binary diversity for these different
distributions. To this end, we have to rethink the restriction of fixed binary set
for further enhancing the capacity of BNNs.

Based on the above observation and analysis, we propose anAdaptive Binary
method (AdaBin) to redefine the binary values (b1, b2 ∈ R) with their cen-
ter position and distance, which aims to obtain the optimal binary set that
best matches the real-valued distribution. We propose two corresponding opti-
mization strategies for weights and activations. On one hand, we introduce an
equalization method for the weights based on statistical analysis. By aligning
the symmetrical center of binary distribution to real-valued distribution and
minimizing the Kullback-Leibler divergence (KLD) of them, we can obtain the
analytic solutions of center and distance, which makes the weight distribution
much balanced. On the other hand, we introduce a gradient-based optimization
method for the activations with a loss-aware center and distance, which are ini-
tialized in the form of sign function and trained in an end-to-end manner. As
shown in Table 1, we present the truth tables of the multiplication results for
binary values in different BNNs. Most previous BNNs binarize both the weights
and activations into {−1,+1} as shown in Table 1a. A few other methods [30,38]
attempt to binarize weights and activations into {0,+1}, as shown in Table 1b
and Table 1c. These methods result in 2 or 3 kinds of output representations.
Table 1d illustrates the results of our proposed AdaBin method. The activations
and weights are not fixed and could provide 4 kinds of output results, which
significantly enhances the feature representation of binary networks as shown in
Fig. 1b. Meanwhile, we can find that previous binary methods are the special
cases of our AdaBin and we extend the binary values from ±1 to the whole real
number domain.

Furthermore, we demonstrate that the proposed AdaBin can also be effi-
ciently implemented by XNOR and BitCount operations with negligible extra
calculations and parameters, which could achieve 60.85× acceleration and 31×
memory saving in theory. With only minor extra computation, our proposed Ad-
aBin outperforms state-of-the-art methods for various architectures, as shown in
Fig. 1a. The contributions of this paper are summarize as follow:
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(1) We rethink the limitation of {−1,+1} in previous BNNs and propose
a simple yet effective binary method called AdaBin, which could seek suitable
binary sets by adaptively adjusting the center and distance of 1-bit values.

(2) Two novel strategies are proposed to obtain the optimal binary sets of
weights and activations for each layer, which can further close the performance
gap between binary neural networks and full-precision networks.

(3) Extensive experiments on CIFAR-10 and ImageNet demonstrate the su-
perior performance of our proposed AdaBin over state-of-the-art methods. Be-
sides, though not tailored for object detection task, AdaBin also outperforms
prior task-specific BNN methods by 1.9 mAP on PASCAL VOC dataset.

2 Related Work

Binary neural network was firstly introduced by [13]. They creatively proposed
to binarize weights and activations with sign function and replace most arith-
metic operations of deep neural networks with bit-wise operations. To reduce the
quantization error, XNOR-Net [37] proposed a channel-wise scaling factor to re-
construct the binarized weights, which also becomes one of the most important
components of the subsequent BNNs. ABC-Net [32] approximated full-precision
weights with the linear combination of multiple binary weight bases and em-
ployed multiple binary activations to alleviate information loss. Inspired by the
structures of ResNet [21] and DenseNet [25], Bi-Real Net [34] proposed to add
shortcuts to minimize the performance gap between the 1-bit and real-valued
CNN models, and BinaryDenseNet [6] improved the accuracy of BNNs by in-
creasing the number of concatenate shortcut. IR-Net [36] proposed the Libra-PB,
which can minimize the information loss in forward propagation by maximizing
the information entropy of the quantized parameters and minimizing the quanti-
zation error with the constraint {−1,+1}. ReActNet [33] proposed to generalize
the traditional sign and PReLU functions, denoted as RSign and RPReLU for
the respective generalized functions, to enable explicit learning of the distribu-
tion reshape and shift at near-zero extra cost.

3 Binarization with Adaptive Binary Sets

In this section, we focus on how to binarize weights and activations respectively,
and introduce a new non-linear module to enhance the capacity of BNNs.

We first give a brief introduction on the general binary neural networks.
Given an input a ∈ Rc×h×w and weight w ∈ Rn×c×k×k, then we can get the
output y ∈ Rn×h′×w′

by convolution operation as Eq. 1.

y = Conv(a,w). (1)

To accelerate the inference process, previous BNNs always partition the input
and weight into two clusters, −1 and +1 with sign function as Eq. 2.

Sign(x) =

{
b1 = −1, x < 0

b2 = +1, x ≥ 0
. (2)
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Fig. 2: AdaBin quantizer. The middle represents the mapping from floating point
distribution fr(x) to binary distribution fb(x). b1 and b2 are the two clusters, α
and β are the distance and center, respectively.

Then the floating-point multiplication and accumulation could be replaced by
bit-wise operation XNOR (denoted as ⊙) and BitCount as Eq. 3, which will
result in much less overhead and latency.

y = BitCount(ab ⊙ wb). (3)

In our method, we do not constrain the binarized values to a fixed set like
{−1,+1}. Instead we release b1 and b2 to the whole real number domain and
utilize the proposed AdaBin quantizer, which could adjust the center position
and distance of the two clusters adaptively as Eq. 4. In this way, the binarized
distribution can best match the real-valued distribution:

B(x) =

{
b1 = β − α, x < β

b2 = β + α, x ≥ β
, (4)

where the α and β are the half-distance and center of the binary values b1 and
b2. Fig. 2 shows the binarization of AdaBin, as we can see that, the data on
the left of the center will be clustered into b1 and the data on the right of
the center will be clustered into b2. The distance α and center β will change
with different distributions, which help partition the floating point data into
two optimal clusters adaptively. For the binarization of weights and activations,
we exploit the same form of AdaBin but different optimization strategies.

3.1 Weight Equalization

Low-bit quantization greatly weaken the feature extraction ability of filter
weights, especially for 1-bit case. Previous BNNs exploit different methods to
optimize the binarized weights. XNOR-Net [37] minimizes the mean squared er-
ror (MSE) by multiplying a scale factor, and IR-Net [36] obtains the maximum
information entropy by weight reshaping and then conduct the same operation
as XNOR-Net. However, these methods can not get accurate quantization error
between binarized data and real-valued data due to the following limitations.
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Firstly, the center position of previous binarized values {−1,+1} is always 0,
which is not aligned with the center of original real-valued weights. Secondly,
MSE is a simple metric to evaluate the quantization error but do not consider
the distribution similarity between binarized data and real-valued data. On the
contrary, the Kullback-Leibler divergence (KLD) is a measure on probability dis-
tributions [28] and is more accurate to evaluate the information loss than MSE.
Therefore, we propose to minimize the KLD to achieve a better distribution-
match. We apply the AdaBin for weights binarization as Eq. 5:

wb = B(w) =

{
wb1 = βw − αw, w < βw

wb2 = βw + αw, w ≥ βw

, (5)

where αw and βw are distance and center of binarized weights, the binary ele-
ments of wb in the forward is βw−αw and βw+αw. And the KLD of real-valued
distribution and binary distribution can be represented as Eq. 6.

DKL(Pr||Pb) =

∫
x∈w&wb

Pr(x)log
Pr(x)

Pb(x)
dx, (6)

where the Pr(x) and Pb(x) denote the distribution probability of real-valued
weights and binarized weights. In order to make the binary distribution more
balanced, we need to align its symmetrical center (position of mean value) to
the real-valued distribution, so that Eq. 7 can be obtained.

βw = E(w) ≈ 1

c× k × k

c−1∑
m=0

k−1∑
j=0

k−1∑
i=0

wm,j,i. (7)

Therefore, we can further infer that Pb(wb1) = Pb(wb2) = 0.5. Since there is
no convinced formula of weight distribution for neural networks, it is difficult
to calculate the Kullback-Leibler divergence explicitly. However, the weights in
such networks typically assume a bell-shaped distribution with tails [2,4,45], and
the both sides are symmetrical on the center, then we can get the αw as Eq. 8,
the detailed proof is in the supplementary.

αw =
∥w− βw∥2√
c× k × k

, (8)

where ∥ · ∥2 denotes the ℓ2-norm. In our method, the distance αw and center
βw are channel-wise parameters for weight binarization, and updated along the
real-valued weights during the training process. As shown in Figure ??, without
distribution reshaping and the constraint that the center of binary values is 0,
AdaBin could equalize the weights to make the binarized distribution best match
the real-valued distribution. During the inference, we can decompose the binary
weights matrix into 1-bit storage format as following:

wb = αwbw + βw, bw ∈ {−1,+1}. (9)

So that the same as the previous BNNs, our method can also achieve about 32×
memory saving.
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3.2 Gradient-based Activation Binarization

Activation quantization is a challenging task with low bit-width, and has much
more impacts to the final performance than weight. HWGQ [8] proposed to
address this challenge by applying a half-wave Gaussian quantization method,
based on the observation that activation after Batch Normalization tends to have
a symmetric, non-sparse distribution, that is close to Gaussian and ReLU is a
half-wave rectifier. However, recent BNNs [35] proposed to replace the ReLU
with PReLU [20], which could facilitate the training of binary networks. So
that HWGQ can not be further applied because of this limitation. Besides, the
distribution of real-valued activations is not as stable as weights, which keeps
changing for different inputs. Therefore we can not extract the center and dis-
tance from the activations as Eq. 7 and Eq. 8, which brings extra cost to calculate
them and will greatly weaken the hardware efficiency of binary neural networks
during inference. In order to get the optimal binary activation during train-
ing, we propose a gradient-based optimization method to minimize the accuracy
degradation arising from activation binarization. Firstly, we apply the AdaBin
quantizer to activations as Eq. 10.

ab = B(a) =

{
ab1 = βa − αa, a < βa

ab2 = βa + αa, a ≥ βa

, (10)

where αa and βa are the distance and center of binarized activations, and the
binary set of ab in the forward is {βa − αa, βa + αa}. To make the binary ac-
tivations adapt to the dataset as much as possible during the training process,
we set αa and βa as learnable variables, which could be optimized via backward
gradient propagation as total loss decreases. In order to ensure that the training
process can converge, we need to clip out the gradient of large activation values
in the backward as Eq. 11.

∂L
∂a

=
∂L
∂ab

∗ 1| a−βa
αa

|≤1, (11)

where L denotes the output loss, a is the real-valued activation and ab is the
binarized activation, 1|x|≤1 denotes the indicator function that equals to 1 if
|x| ≤ 1 is true and 0 otherwise. This functionality can be achieved by a composite
function of hard tanh and sign, thus we rewrite the Eq. 10 as following:

ab = αa × Sign(Htanh(
a− βa

αa
)) + βa. (12)

For simplicity, we denote g(x) = Sign(Htanh(x)), then we can get the gradient
of αa and βa as Eq. 13 in the backward:

∂L
∂αa

=
∂L
∂ab

∂ab

∂αa
=

∂L
∂ab

(g(
a− βa

αa
)− a

αa
g′(

a− βa

αa
)),

∂L
∂βa

=
∂L
∂ab

∂ab

∂βa
=

∂L
∂ab

(1− g′(
a− βa

αa
)),

(13)
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XNOR-BitCount BitCount Pre-Compute

Fig. 3: Binary convolution process. The I represents the identity matrix, and
F (w) represents the extra computation with w, which could be pre-computed
during the inference.

where g′(x) is the derivative of g(x). We set the initial values of center position
βa and distance αa to 0 and 1, so that the initial effect of our binary quantizer is
equivalent to the sign function[13,34,36]. Then these two parameters of different
layers are dynamically updated via gradient descent-based training, and converge
to the optimal center and distance values, which is much different from the
unified usage of the sign function in the previous BNNs. During inference, the
αa and βa of all the layers are fixed, then we can binarize the floating point
activations into 1-bit as followings:

ab = αaba + βa, ba ∈ {−1,+1}, (14)

where the ba is the 1-bit storage form and obtained online with input data.
Compared with the sign function of previous BNNs, AdaBin will take a little
overhead but could significantly improve the feature capacity of activations with
the adaptive binary sets for each layer.

3.3 Non-linearity

Prior methods [35] propose to use Parametric Rectified Linear Unit (PReLU) [20]
as it is known to facilitate the training of binary networks. PReLU adds an
adaptively learnable scaling factor in the negative part and remain unchanged
in the positive part. However, we empirically found that the binary values with
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Networks Methods W/A Acc. (%)

ResNet-18

Full-precision 32/32 94.8
RAD [15]

1/1

90.5
IR-Net [36] 91.5
RBNN [31] 92.2
ReCU [42] 92.8
AdaBin (Ours) 93.1

ResNet-20

Full-precision 32/32 91.7
DoReFa [46]

1/1

79.3
DSQ [16] 84.1
IR-Net [36] 86.5
RBNN [31] 87.8
AdaBin (Ours) 88.2

VGG-Small

Full-precision 32/32 94.1
LAB [24]

1/1

87.7
XNOR-Net [37] 89.8
BNN [13] 89.9
RAD [15] 90.0
IR-Net [36] 90.4
RBNN [31] 91.3
SLB[43] 92.0
AdaBin (Ours) 92.3

Table 2: Comparisons with state-of-the-art methods on CIFAR-10. W/A denotes
the bit width of weights and activations.

our proposed AdaBin are almost all positive in very few layers, which invalidate
the non-linearity of PReLU. Therefore, to further enhance the representation of
feature maps, we propose to utilize Maxout [17] for the stronger non-linearity in
our AdaBin, which is defined as Eq. 15.

fc(x) = γ+
c ReLU(x)− γ−

c ReLU(−x), (15)

where x is the input of the Maxout function, γ+
c and γ−

c are the learnable
coefficient for the positive part and negative part of the c-th channel, respectively.
Following the setting of PReLU, the initialization of γ+

c and γ−
c are 1 and 0.25.

3.4 Binary Convolution for AdaBin

The goal of BNNs is to replace the computationally expensive multiplication
and accumulation with XNOR and BitCount operations. Although the binary
sets are not limited to {−1,+1}, our method can still be accelerated with bit-
wise operations by simple linear transformation. As shown in Fig. 3, we can
binarize the weights and get the 1-bit matrix bw offline via Eq. 9, and binarize
the activations to get the 1-bit activations ba online via Eq. 14, then decompose
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the binary convolution into three items. The first term is the same as the previous
BNNs, and the second term only needs to accumulation for one output channel,
which can be replaced by BitCount. The third term F (w) could be pre-computed
in the inference process. For n = c = 256, k = 3, w′ = h′ = 14, compared
with the binary convolution of IR-Net [37], our method only increases 2.74%
operations and 1.37% parameters, which are negligible compared to the total
complexity and could achieve 60.85× acceleration and 31× memory saving in
theory, the detailed analysis is shown in the supplementary material.

4 Experiments

In this section, we demonstrate the effectiveness of our proposed AdaBin via
comparisons with state-of-the-art methods and extensive ablation experiments.

4.1 Results on CIFAR-10

We train AdaBin for 400 epochs with a batch size of 256, where the initial learn-
ing rate is set to 0.1 and then decay with CosineAnnealing as IR-Net[36]. We
adopt SGD optimizer with a momentum of 0.9, and use the same data augmen-
tation and pre-processing in [21] for training and testing. We compare AdaBin
with BNN [13], LAB [24], XNOR-Net [37], DoReFa [46], DSQ [16], RAD [15],
IR-Net [36], RBNN [31], ReCU [42] and SLB[43]. Table 2 shows the performance
of these methods on CIFAR-10. AdaBin obtains 93.1% accuracy for ResNet-18
architecture, which outperforms the ReCU by 0.3% and reduces the accuracy
gap between BNNs and floating-point model to 1.7%. Besides, AdaBin obtains
0.4% accuracy improvement on ResNet-20 compared to the current best method
RBNN, and gets 92.3% accuracy while binarizing the weights and activations of
VGG-small into 1-bits, which outperforms SLB by 0.3%.

4.2 Results on ImageNet

We train our proposed AdaBin for 120 epochs from scratch and use SGD opti-
mizer with a momentum of 0.9. We set the initial learning rate to 0.1 and then
decay with CosineAnnealing following IR-Net[36], and utilize the same data aug-
mentation and pre-processing in [21]. In order to demonstrate the generality of
our method, we conduct experiments on two kinds of structures. The first group
is the common architectures that are widely used in various computer vision
tasks, such as AlexNet [27] and ResNet [21]. Another kind is the binary-specific
structures such as BDenseNet [7], MeliusNet [5] and ReActNet [33], which are
designed for BNNs and could significantly improve the accuracy with the same
amount of parameters as common structures.
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Networks Methods W/A Top-1 (%) Top-5 (%)

AlexNet

Full-precision 32/32 56.6 80.0
BNN [13]

1/1

27.9 50.4
DoReFa [46] 43.6 -
XNOR [37] 44.2 69.2
SiBNN [38] 50.5 74.6
AdaBin (Ours) 53.9 77.6

ResNet-18

Full-precision 32/32 69.6 89.2
BNN [13]

1/1

42.2 -
XNOR-Net [37] 51.2 73.2
Bi-Real [34] 56.4 79.5
IR-Net [36] 58.1 80.0
Si-BNN [38] 59.7 81.8
RBNN [31] 59.9 81.9
SiMaN [30] 60.1 82.3
ReCU[42] 61.0 82.6
AdaBin (Ours) 63.1 84.3
IR-Net* [36]

1/1

61.8 83.4
Real2Bin [35] 65.4 86.2
ReActNet* [33] 65.5 86.1
AdaBin* (Ours) 66.4 86.5

ResNet-34

Full-precision 32/32 73.3 91.3
ABC-Net [32]

1/1

52.4 76.5
Bi-Real [34] 62.2 83.9
IR-Net [36] 62.9 84.1
SiBNN [38] 63.3 84.4
RBNN [31] 63.1 84.4
ReCU[42] 65.1 85.8
AdaBin (Ours) 66.4 86.6

Table 3: Comparison with state-of-the-art methods on ImageNet for AlexNet
and ResNets. W/A denotes the bit width of weights and activations. * means
using the two-step training setting as ReActNet.

Common structures. We show the ImageNet performance of AlexNet,
ResNet-18 and ResNet-34 on Table 3, and compare AdaBin with recent methods
like Bi-Real [34], IR-Net [36], SiBNN [38], RBNN [31], ReCU[42], Real2Bin [35]
and ReActNet [33]. For AlexNet, AdaBin could greatly improve its performance
on ImageNet, outperforming the current best method SiBNN by 3.4%, and reduc-
ing the accuracy gap between BNNs and floating-point model to only 2.7%. Be-
sides, AdaBin obtains a 63.1% Top-1 accuracy with ResNet-18 structure, which
only replaces the binary function and non-linear module of IR-Net [36] with the
adaptive quantizer and Maxout but gets 5.0% improvement and outperforms
the current best method ReCU by 2.1%. For ResNet-34, AdaBin obtain 1.3%
performance improvement compared to the ReCU while binarizing the weights
and activations into 1-bits. Besides, we also conduct experiments on ResNet-18
following the training setting as ReActNet. With the two step training strat-
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Networks Methods OPs (×108) Top-1 (%)

BDenseNet28 [7]
Origin 2.09 62.6
AdaBin 2.11 63.7 (+1.1)

MeliusNet22 [5]
Origin 2.08 63.6
AdaBin 2.10 64.6 (+1.0)

MeliusNet29 [5]
Origin 2.14 65.8
AdaBin 2.17 66.5 (+0.7)

MeliusNet42 [5]
Origin 3.25 69.2
AdaBin 3.28 69.7 (+0.5)

MeliusNet59 [5]
Origin 5.25 71.0
AdaBin 5.27 71.6 (+0.6)

ReActNet-A [33]
Origin 0.87 69.4
AdaBin 0.88 70.4 (+1.0)

Table 4: Comparisons on ImageNet for binary-specific structures.

egy, AdaBin could get 66.4% top-1 accuracy, which obtains 0.9% improvement
compared to ReActNet.
Binary-specific structures. Table 4 shows the performance comparison with
BDenseNet, MeliusNet and ReActNet. For BDenseNet28, AdaBin could get 1.1%
improvement with the same training setting, which costs negligible extra com-
putational operations. Similarly, when AdaBin is applied to MeliusNet, an ad-
vanced version of BDenseNet, it outperforms the original networks by 1.0%,
0.7%, 0.5% and 0.6%, respectively, demonstrating that AdaBin could signifi-
cantly improve the capacity and quality of binary networks. Besides, we also
train the ReActNet-A structure with our AdaBin, following the same training
setting with ReActNet [33]. As we can see that, AdaBin could get 1.0% per-
formance improvement with the similar computational operations. Our method
could explicitly improve the accuracy of BNNs with a little overhead compared
to state-of-the-art methods, as shown in Fig. 1a.

4.3 Results on PASCAL VOC

Table 5 presents the results of object detection on PASCAL VOC dataset for
different binary methods. We follow the training strategy as BiDet [34]. The
backbone network was pre-trained on ImageNet [14] and then we finetune the
whole network for the object detection task. During training, we used the data
augmentation techniques in [40], and the Adam optimizer [26] was applied. The
learning rate started from 0.001 and decayed twice by multiplying 0.1 at the
160-th and 180-th epoch out of 200 epochs. Following the setting of BiDet [40],
we evaluate our proposed AdaBin on both the normal structure and the struc-
ture with real-valued shortcut. We compare them with general binary methods
BNN [13], XNOR-Net [37] and BiReal-Net [34], and also compare with BiDet [40]
and AutoBiDet [39], which are specifically designed for high-performance binary



AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets 13

Methods W/A #Params(M) FLOPs(M) mAP

Full-precision 32/32 100.28 31750 72.4
TWN [29] 2/32 24.54 8531 67.8
DoReFa [46] 4/4 29.58 4661 69.2

BNN [13] 1/1 22.06 1275 42.0
XNOR-Net [37] 1/1 22.16 1279 50.2
BiDet [40] 1/1 22.06 1275 52.4
AutoBiDet [39] 1/1 22.06 1275 53.5
AdaBin (Ours) 1/1 22.47 1280 64.0

BiReal-Net [34] 1/1 21.88 1277 63.8
BiDet* [40] 1/1 21.88 1277 66.0
AutoBiDet* [39] 1/1 21.88 1277 67.5
AdaBin* (Ours) 1/1 22.47 1282 69.4

Table 5: The comparison of different methods on PASCAL VOC for object de-
tection. W/A denotes the bit width of weights and activations. * means the the
proposed method with extra shortcut for the architectures [40].

detectors. And for reference, we also show the results of the multi-bit quanti-
zation method TWN [29] and DoReFa [46] with 4 bit weights and activations.
Compared with the previous general BNNs, the proposed AdaBin improves the
BNN by 22.0 mAP, XNOR by 13.8 mAP and Bi-Real Net by 5.6 mAP. Even for
the task-specific optimization method BiDet, they are 11.6 mAP and 2.6 mAP
lower than our method with two structures, and the improved AutoBiDet still
lower than AdaBin by 10.5 mAP and 1.9 mAP. Besides, AdaBin with shortcut
structure could outperform TWN and DoReFa, which demonstrates that our
could significantly enable the binary neural networks to complex tasks.

4.4 Ablation Studies

Effect of AdaBin quantizer. We conduct the experiments by starting with
a vanilla binary neural networks, and then add the AdaBin quantizer of weights
and activations gradually. To evaluate different methods fairly, we utilize PReLU
for these experiments, which is equal to the Maxout function only with γ− for
negative part. The results are shown in Table 6a, we can see that when combined
with existing activation binarization by sign function, our equalization method
for binarizing weights could get 0.6% accuracy improvement. Besides, when we
free the αw and βw to two learnable parameters which are trained in an end-to-
end manner as activation, it only get 86.7% accuracy and is much poorer than
AdaBin (the last two row). We find that its Kullback-Leibler divergence is also
less than AdaBin, which shows the KLD is much important to 1-bit quantiza-
tion. When keeping the weight binarization as XNOR-Net [37], the proposed
gradient-based optimization for binarizing activations could get 1.6% accuracy
improvement, as shown in the 3rd row. Combining the proposed weight equal-
ization and activation optimization of AdaBin boosts the accuracy by 2% over
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W set A set Non-linearity Acc.(%)

{−α,+α} {-1, +1} PReLU 85.7
{wb1,wb2} {-1, +1} PReLU 86.3
{−α,+α} {ab1, ab2} PReLU 87.3
{wb1,wb2} {ab1, ab2} PReLU 87.7
{wb1,wb2}∗ {ab1, ab2} Maxout 86.7
{wb1,wb2} {ab1, ab2} Maxout 88.2

(a) Binary quantizer

Scale factors Top-1 (%) Top-5 (%)

None 53.2 77.2
γ+ 62.8 83.9
γ− 62.9 84.1

γ−, γ+ 63.1 84.3

(b) γ in Maxout

Table 6: (a) Ablation studies of AdaBin for ResNet-20 on CIFAR-10. * means
the αw and βw are learnable parameters to the binary sets. (b) The ablation
studies of Maxout on ImageNet, the scale factor with γ− equals to PReLU.

vanilla BNN (the 1st vs. 4th row), which shows that AdaBin quantizer could
significantly improve the capacity of BNNs.
Effect of γ in Maxout. In addition, we evaluate four activation functions on
ImageNet. The first is none, denoting it is an identity connection. The second is
Maxout that only with γ+ for positive part, the third is Maxout only with γ−

for negative part and the last one is the complete Maxout as Eq. 15. As shown
in Table 6b, the coefficient of γ+ and γ− improve the accuracy by 9.6% and
9.7% individually. The activation function with both coefficients gets the best
performance, which justifies the effectiveness of Maxout.

5 Conclusion

In this paper, we propose an adaptive binary method (AdaBin) to binarize
weights and activations with optimal value sets, which is the first attempt to
relax the constraints of the fixed binary set in prior methods. The proposed
AdaBin could make the binary weights best match the real-valued weights and
obtain more informative binary activations to enhance the capacity of binary
networks. We demonstrate that our method could also be accelerated by XNOR
and BitCount operations, achieving 60.85× acceleration and 31× memory
saving in theory. Extensive experiments on CIFAR-10 and ImageNet show the
superiority of our proposed AdaBin, which outperforms state-of-the-art methods
on various architectures, and significantly reduce the performance gap between
binary neural networks and real-valued networks. We also present extensive
experiments for object detection, which demonstrates that our method can
naturally be extended to more complex vision tasks.
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