18 H. M. Dolatabadi et al.

A Greedy Subset Selection Algorithms

This section briefly reviews the technical details of greedy subset selection algo-
rithms used in our experiments. Further details can be found in [27,16].

A.1 CRAIG

As discussed previously, the goal of coreset selection is to find a subset of the
training data such that the weighted gradient computed over this subset can
give a good approximation to the full gradient. Thus, CRAIG [27] starts with
explicitly writing down this objective as:

i .t i Yis - j i Yjs <e
aréggn‘}mw\st Igleag)(iEZVVO@(m vi; fo) j;g'ijg@(m] y;; fo) e. (16)

Here, V = [n] = {1,2,...,n} denotes the training set. The goal is to find a
coreset S C V and its associated weights «y,; such that the objective of Eq. (16)
is minimized. To this end, Mirzasoleiman et al. [27] find an upper-bound on
the gradient estimation error of Eq. (16). This way, it is shown that the coreset
selection objective can be approximated by:

S* =argmin|S|, s.t. L(S)2& mind;; < e, 17
£mins (6% 3 miyas an)

where
dij & max [|Ve® (i, yi: fo) — Ve (2;,y;: fo)ll (18)

denotes the maximum pairwise gradient distances computed for all ¢ € V' and
j € S. Then, Mirzasoleiman et al. [27] cast Eq. (17) as the well-known submodular
set cover problem for which greedy solvers exist [26,29,40].

A.2 GradMatch

Killamsetty et al. [16] studies the convergence of adaptive data subset selection
algorithms using stochastic gradient descent (SGD). It is shown that the con-
vergence bound consists of two terms: an irreducible noise-related term, and an
additional gradient error term just like Eq. (16). Based on this analysis, Killam-
setty et al. [16] propose to minimize this error directly. To this end, they use the
Orthogonal Matching Pursuit (OMP) [31,7] as their greedy solver, resulting in
an algorithm called GRAD-MATCH. Since GRADMATCH minimizes the gradient
estimation error given in Eq. (16) objective directly, it achieves a lower error
compared to CRAIG that only minimizes an upper-bound of it.

B Further Details

B.1 Final Algorithm

Alg. 1 summarizes our adversarial coreset selection approach.

f~-Robustness and Beyond: Unleashing Efficient Adversarial Training 19

Algorithm 1 Adversarial Training with Coreset Selection

Input: dataset D = {(w4,y:)}._,, neural network fo(-).
Output: robustly trained neural network fg(-).

Parameters: learning rate «, total epochs E, warm-start coefficient x, coreset update
period T, batch size b, coreset size k, perturbation bound e.

1: Initialize @ randomly.

2: Kepochs = K * E

3: Twarm = Kepochs * k

4: fort=1,2,...,F do

5: if ¢t < Tywarm then

6: S <~ D \\ Warm-start with the entire data and uniform weights.
7: else if ¢ > Kepochs & t%T = 0 then

8: Z = BATCHASSIGNMENTS (D, b) \\ Batch-wise selection.

9: Y ={fo(x:) | (xi,y:) € D} \\ Computing the logits.

10: G = ADVGRADIENT (D, Y) \\ Using Eqs. 12 & 15 to find the gradients.
11: S <+ GREEDYSOLVER (D, Z, G, coreset size = k) \\ Finding the coreset.
12: else
13: Continue
14: end if
15: for batch in S do
16: batchaqvy = ADVEXAMPLEGEN (batch, fo, €)
17: 6 +— SGD (batchadv, fo,«) \\ Performing SGD over a batch of data.
18: end for
19: end for

B.2 TRADES Gradient

To compute the second gradient term in Eq. (14) let us assume that w(6) =
fo(xaav) and z(0) = fo(x). We can write the aforementioned gradient as:

VoLck (fo(Taav), fo(x)) = VoLcr (w(0),2(0))

D 9Loeyy0p(0) + 222V, 2(0)

@ VoLcr (fo(Taay), freeze (fo(x)))
-+ VQ,CCE (freeze (fg(wadv)) 7fg ($)) . (19)

Here, step (1) is derived using the multi-variable chain rule. Also, step (2) is
the re-writing of step (1) by using the freeze(-) kernel that stops the gradients
from backpropagating through its argument function. Using this derivation, we
can write the final TRADES gradient as:

Vo® (z,y; fo) = VoLcr (fo(x),y) + VoLcr (fo(Taav), freeze (fo(x))) /A

+ VoLck (freeze (fo(Taav)) , fo(x)) /A
(20)

20 H. M. Dolatabadi et al.
C Implementation Details

In this section, we provide the details of our experiments in Sec. 4. We used a
single NVIDIA Tesla V100-SXM2-16GB GPU for CIFAR-10 [19] and SVHN [30],
and a single NVIDIA Tesla V100-SXM2-32GB GPU for ImageNet-12 [32,23].
Our implementation can be found on GitHub.

C.1 Training Settings.

Tab. 5 shows the entire set of hyper-parameters and settings used for training
the models of Sec. 4.

C.2 Evaluation Settings

For the evaluation of TRADES and £,-PGD adversarial training, we use PGD
attacks. In particular, for TRADES and ¢..-PGD adversarial training, we use
{-o-PGD attacks with ¢ = 8/255, step-size o = 1/255, 50 iterations, and 10
random restarts. Also, for ¢o-PGD adversarial training we use ¢5-PGD attacks
with e = 80/255, step-size o = 8/255, 50 iterations and 10 random restarts.

For Perceptual Adversarial Training (PAT), we report the attacks’ settings
in Tab. 4. We evaluated each case using the same set of unseen/seen attacks as
in Laidlaw et al. [22]. However, since we trained our model with slightly different
€ bounds, we changed the attacks’ settings accordingly.

Table 4: Hyper-parameters of the attacks used for the evaluation of PAT models.

Dataset Attack Bound Iterations

AutoAttack-£5 [5] 1 20

S AutoAttack-f [5] 8/255 20
I~ StAdv [43] 0.02 50
= ReColor [21] 0.06 100
@) PPGD [22] 0.40 40
LPA [22] 0.40 40
AutoAttack-¢2 [5] 1200/255 20

& AutoAttack-foo [5] 4/255 20
2 JPEG [13] 0.125 200
Z StAdv [43] 0.02 50
& ReColor [21] 0.06 200
g PPGD [22] 0.35 40

LPA [22] 0.35 40

https://github.com/hmdolatabadi/ACS

21

f~-Robustness and Beyond: Unleashing Efficient Adversarial Training

§8g/01 - - g6T/8 Qeg/Se' T SGG/SSL'T ozis-dejg oeyry
1 0T o1 o1 I 01 (uorgo9[0g 3959100)) SsuoljeI)] HOeIIY
1 01 01 (0)8 01 01T (Surureay,) suorjesal] OEIIV
G3z/8 ST°0 S0 §5z/08 G5z/8 6ge/8 (‘wig rensip uo punog) =
< (3oNx*01V) SdIdT ([0g] 1oN*01V) SdIdT &y 7 =7 aunsea]N AjLIe[IuIlg [ensip
[GT 0T 0g 0% 0% (syooda) poriog uoI}09[ag 395810
4 1z 6T 4 9¢ 0g syoody }IeIS-WIeA
0z 0T 0T 0z 0¢ 0% azIg yoeg 39010
%09 %09 %0¥ %0€ %09 %08 az1Ig j0saI0D
09 06 0gT 0gT 0gT 00T sypody [ej0L
8TT 0% 0S8 8TT 8TT 8T1T (11m3) °z1g5 yojeg
»-01-¢ »—01-C »—01°¢ »—01-¢ »—01-§ »—01-T Keoo WSrom
(9¢ ‘2¢) 10 ((08 ‘09 ‘e¥) T'0 (00T ‘06 ‘c2) 1'0 (00T ‘06 ‘SL) 1°0 (00T ‘08) 1°0 (06 ‘GL) T°0 (syoodo) Aeos(a1
10 10 10 10 10°0 10 -a] Teryug
dogs-1ymN dogs-1miN dogs-iymiN dogs-nymiN dogs-iymy - degs-1ymN I9[Mpaydy
ans ans ans ans ans ans aezrurydO
ST-1oNSoY ([REINECH 0G-1ONSOY ST-1oNsoY ST-1ONSOY ST-1ONSeY Y21y [PPOIN
01-4VAID gl-joNeSew] 0T-UVAID NHAS 0T-YVAID 0T-4VdID josereq

APV 95 vdT-1sed VdT-1sed and-%y and-=7 SHAVYL
Jojowreaed-rod Ay

juswrredxy

‘F "00G JO SHNsal [ejuowILIodXe 10 S[TRjop SUTUIRL],

G OIqRL,

22 H. M. Dolatabadi et al.

D Extended Experimental Results

D.1 Extended Results of PAT vs. Unseen Attacks

Tab. 6 shows the full details of our experiments on PAT [22]. In each case,
we train ResNet-50 [12] classifiers using LPIPS [45] objective of PAT [22]. All
the training hyper-parameters are fixed. The only difference is that we enable
adversarial coreset selection as our method. During inference, we evaluate each
trained model against a few unseen attacks, as well as two variants of Perceptual
Adversarial Attacks [22] that the models are trained initially on. As can be
seen, adversarial coreset selection can significantly reduce the training time while
experiencing only a tiny reduction in the average robust accuracy.

D.2 Trade-offs

Here, we study the accuracy vs. speed-up trade-off in adversarial coreset se-
lection. For this study, we train our adversarial coreset selection method us-
ing different versions of CRAIG [27] and GRADMATCH [16] on CIFAR-10 using
TRADES. In particular, for each method, we start with the base algorithm and
add the batch-wise selection and warm-start one by one. Also, to capture the
effect of the coreset size, we vary this number from 50% to 10% in each case.
Fig. 4 shows the clean and robust error vs. speed-up compared to full adversarial
training. In each case, the combination of warm-start and batch-wise versions
of the adversarial coreset selection gives the best performance. Moreover, the
training speed increases as we gradually decrease the coreset size. However, this
gain in training speed is achieved at the cost of increasing the clean and robust
error. Both of these observations are in line with that of Killamsetty et al. [16]
around vanilla coreset selection.

D.3 Training with a Mixture of Coreset and Non-coreset Data

In this section, we run an experiment similar to that of Tsipras et al. [37].
Specifically, we minimize the average of adversarial and vanilla training in each
epoch. The non-coreset data is treated as clean samples to minimize the vanilla
objective, while for the coreset samples, we would perform adversarial training.
Tab. 7 shows the results of this experiment. As seen, adding the non-coreset data
as clean inputs to the training improves the clean accuracy while decreasing the
robust accuracy. These results align with the observations of Tsipras et al. [37]
around the existence of a trade-off between clean and robust accuracy.

23

f~-Robustness and Beyond: Unleashing Efficient Adversarial Training

TI'SI9S 67 ET LI'€E €T'€S SEOF 6261 GT'9L 6899 L8728 TT'16 (VATI%ed) Lvd 1Ind 5
o

[}

TL'G98T TT°€T 9€'8C LT'€S €8°¢F £8°6¢ qT'TL 7909 8€'T¢ 80°28 (SIMO) HOIVINAVYD APV §,
0]

90°LI8C LOVT P06 <0°€9S vO'v¥y LV LE 6L°TL v 09 ¥4 19 6698 Amg:Ov DIVY)) APV 9
76°C891T 10°8 c9°'cc v0'8Y €C'C9 89°8¥ - 96°L¢ LT°EY 2098 A<mq-awmmv LVd A a
=

9T L8L vaL 7661 TT' 9% 92°'C9 98°8% - 11°ve 0C°6¢ VI €8 Aw;Ov HOLVINAVYD) "APY W
1

K

Ve L9L vL 9¢'6T SS9 97 69°C9 09°6¥% - v6°€¢ 86°6¢ TT' €8 Awa:Ov DIVY])) "APY o
vdT abdd uedN [1g]ioopey [e7] Apvas [€1] DAdr [g] -0y [g] gy-omy g

(surur) wes =3
. O POYIIN Surureay, &
SWILY, "uredy, syoe]})y u99g S)oR})Yy uL9dsu() m

"s3ur)99s 9} JNOQR UOIJRULIOJUI oI0W 10J) XIpuaddy
oY} 99s osed[d .Fﬂ ‘D 72 MR[PIRT O} IRIWUIS POJOS[ES dlom SYORIJR USdsUN oY) ‘josejep yoes Ul "(VdT1 pue (09dd) IPeNV
[RLIESIOAPY [eN1dedIo JO SUOISIOA JULISHIP puR SUIUIRI} SULIND U9dS J0U SYORIJR JSUTRSe POJRN[RAS 9IR SYIOM)OU 9} ‘O 1S9
1V "YIOMIdU S} UIRI) O} _Nm_ (Vd1) ¥oeny renydoored ueiduerder] jse] sosn oA1ioolqo Sururery oy, s1osejep gI-1oNo5ew]
pue OT-VALD 10} Suturel], [euresioapy [enjdooiog jo (surur) owily Sururel) [ejo) pue (9;) AdeInoor Jsngol pue uwa[)) :9 o[qer,

24

H. M. Dolatabadi et al.

Fig. 4: Relative error vs. speed up curves for different versions of adversarial core-
set selection in training CIFAR-10 models using the TRADES objective. In each
figure, the coreset size is changed from 50% to 10% (left to right). (a,
and robust error vs. speed up compared to full TRADES for different versions
of adversarial CRAIG. (¢, d) Clean and robust error vs. speed up compared to

X R 4
10 LA
510 v
— vy
= v *
= y,/' ~¥- CRAIG
§ --t-- 4+ Batch-wise
O 11 ~©®- + Warm-start
L + Both
% 0t e ® TFull TRADES
= ‘ ‘]
~ 1.0 3.0 7.5
Speed-up
(a)
§ *
~ . —+
5101 g T
= |t T
= + 1
=] ¥ < GradMatch
8 / -—*-- + Batch-wise
— +
O 11 —+- + Warm-start
G:>J + Both
'% 01 @ ® Full TRADES
= I ! }
~ 1.0 3.0 7.5
Speed-up
(c)

—
ja)

—_

(e

Relative Robust Error (%)

Relative Robust Error (%)

—_
e

o =

Y
v
v / ¥ CRAIG
L\‘ --t-- 4+ Batch-wise
Y + Warm-start
+ Both
® ® [ull TRADES
1.0 3.0 7.5
Speed-up
(b)
‘ /"+ ”’*
I 7; -4 GradMatch
i --k-- 4 Batch-wise
i —+-- 4+ Warm-start
4 + Both
L] ® [Full TRADES
1.0 3.0 7.5
Speed-up
(d)

full TRADES for different versions of adversarial GRADMATCH.

b) Clean

25

f~-Robustness and Beyond: Unleashing Efficient Adversarial Training

L8'T6C 6€' TV 71°€8 Sururel], "ApY [
8T°€GT €0'8V1 (0N €C9v €78 L9°08 HOLVINAVYED "APY
v€'Ccql TO'8¥1 £€8'6¢ L0°SY EV'y8 9€°08 DIVH]) "APYV

JIRH-eH 210D XINO JIBH-J®H 010D XINO J®H-J®H °I10D XTINO
(surw) 1, 1 (%) oovy | (%) wea1d |

Poy3eIN Sururesy,

"SUNI G I9AO POSRIOAR oI SYNSSI YT, "G "qe], Ul UdAIS aIe s3ur}jeg -sordures
1959100 [elIesIaApe asn Jsnl am 2I0)-XAINQ, U ‘[LE] O} IR[IWUIS YI0M)oU [eINU e Urel) pue sejdures ues[d Jo J[ey Ioyjoue
UM sojdures UOIJ09[9S 1059100 [RLIBSIDADR J[RY XTI oM ‘ JeH-J®H, Ul "0T-YVAID I9A0 (HJ-°7 JO oourULION® :/, 9[qe],

