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A Greedy Subset Selection Algorithms

This section briefly reviews the technical details of greedy subset selection algo-
rithms used in our experiments. Further details can be found in [27,16].

A.1 CRAIG

As discussed previously, the goal of coreset selection is to find a subset of the
training data such that the weighted gradient computed over this subset can
give a good approximation to the full gradient. Thus, Craig [27] starts with
explicitly writing down this objective as:

argmin
S⊆V

|S| s.t. max
θ∈Θ

∥∥∥∥∥∥
∑
i∈V

∇θΦ (xi, yi; fθ)−
∑
j∈S

γj∇θΦ (xj , yj ; fθ)

∥∥∥∥∥∥ ≤ ϵ. (16)

Here, V = [n] = {1, 2, . . . , n} denotes the training set. The goal is to find a
coreset S ⊆ V and its associated weights γj such that the objective of Eq. (16)
is minimized. To this end, Mirzasoleiman et al. [27] find an upper-bound on
the gradient estimation error of Eq. (16). This way, it is shown that the coreset
selection objective can be approximated by:

S∗ = argmin
S⊆V

|S|, s.t. L(S) ≜
∑
i∈V

min
j∈S

dij ≤ ϵ, (17)

where
dij ≜ max

θ∈Θ
∥∇θΦ (xi, yi; fθ)−∇θΦ (xj , yj ; fθ)∥ (18)

denotes the maximum pairwise gradient distances computed for all i ∈ V and
j ∈ S. Then, Mirzasoleiman et al. [27] cast Eq. (17) as the well-known submodular
set cover problem for which greedy solvers exist [26,29,40].

A.2 GradMatch

Killamsetty et al. [16] studies the convergence of adaptive data subset selection
algorithms using stochastic gradient descent (SGD). It is shown that the con-
vergence bound consists of two terms: an irreducible noise-related term, and an
additional gradient error term just like Eq. (16). Based on this analysis, Killam-
setty et al. [16] propose to minimize this error directly. To this end, they use the
Orthogonal Matching Pursuit (OMP) [31,7] as their greedy solver, resulting in
an algorithm called Grad-Match. Since GradMatch minimizes the gradient
estimation error given in Eq. (16) objective directly, it achieves a lower error
compared to Craig that only minimizes an upper-bound of it.

B Further Details

B.1 Final Algorithm

Alg. 1 summarizes our adversarial coreset selection approach.
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Algorithm 1 Adversarial Training with Coreset Selection

Input: dataset D = {(xi, yi)}ni=1, neural network fθ(·).
Output: robustly trained neural network fθ(·).
Parameters: learning rate α, total epochs E, warm-start coefficient κ, coreset update
period T , batch size b, coreset size k, perturbation bound ε.

1: Initialize θ randomly.
2: κepochs = κ · E
3: Twarm = κepochs · k
4: for t = 1, 2, . . . , E do
5: if t ≤ Twarm then

6: S ← D \\ Warm-start with the entire data and uniform weights.

7: else if t ≥ κepochs & t%T = 0 then

8: I = BatchAssignments (D, b) \\ Batch-wise selection.

9: Y = {fθ(xi) | (xi, yi) ∈ D} \\ Computing the logits.

10: G = AdvGradient (D,Y) \\ Using Eqs. 12 & 15 to find the gradients.

11: S ← GreedySolver (D, I,G, coreset size = k) \\ Finding the coreset.

12: else
13: Continue
14: end if
15: for batch in S do
16: batchadv = AdvExampleGen (batch, fθ, ε)

17: θ ← SGD (batchadv, fθ, α) \\ Performing SGD over a batch of data.

18: end for
19: end for

B.2 TRADES Gradient

To compute the second gradient term in Eq. (14) let us assume that w(θ) =
fθ(xadv) and z(θ) = fθ(x). We can write the aforementioned gradient as:

∇θLCE (fθ(xadv), fθ(x)) = ∇θLCE (w(θ), z(θ))

(1)
= ∂LCE

∂w ∇θw(θ) + ∂LCE

∂z ∇θz(θ)

(2)
= ∇θLCE (fθ(xadv), freeze (fθ(x)))

+∇θLCE (freeze (fθ(xadv)) , fθ(x)) . (19)

Here, step (1) is derived using the multi-variable chain rule. Also, step (2) is
the re-writing of step (1) by using the freeze(·) kernel that stops the gradients
from backpropagating through its argument function. Using this derivation, we
can write the final TRADES gradient as:

∇θΦ (x, y; fθ) = ∇θLCE (fθ(x), y) +∇θLCE (fθ(xadv), freeze (fθ(x))) /λ

+∇θLCE (freeze (fθ(xadv)) , fθ(x)) /λ.
(20)
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C Implementation Details

In this section, we provide the details of our experiments in Sec. 4. We used a
single NVIDIA Tesla V100-SXM2-16GB GPU for CIFAR-10 [19] and SVHN [30],
and a single NVIDIA Tesla V100-SXM2-32GB GPU for ImageNet-12 [32,23].
Our implementation can be found on GitHub.

C.1 Training Settings.

Tab. 5 shows the entire set of hyper-parameters and settings used for training
the models of Sec. 4.

C.2 Evaluation Settings

For the evaluation of TRADES and ℓp-PGD adversarial training, we use PGD
attacks. In particular, for TRADES and ℓ∞-PGD adversarial training, we use
ℓ∞-PGD attacks with ε = 8/255, step-size α = 1/255, 50 iterations, and 10
random restarts. Also, for ℓ2-PGD adversarial training we use ℓ2-PGD attacks
with ε = 80/255, step-size α = 8/255, 50 iterations and 10 random restarts.

For Perceptual Adversarial Training (PAT), we report the attacks’ settings
in Tab. 4. We evaluated each case using the same set of unseen/seen attacks as
in Laidlaw et al. [22]. However, since we trained our model with slightly different
ε bounds, we changed the attacks’ settings accordingly.

Table 4: Hyper-parameters of the attacks used for the evaluation of PAT models.

Dataset Attack Bound Iterations

C
IF
A
R
-1
0

AutoAttack-ℓ2 [5] 1 20
AutoAttack-ℓ∞ [5] 8/255 20

StAdv [43] 0.02 50
ReColor [21] 0.06 100
PPGD [22] 0.40 40
LPA [22] 0.40 40

Im
a
g
eN

et
-1
2

AutoAttack-ℓ2 [5] 1200/255 20
AutoAttack-ℓ∞ [5] 4/255 20

JPEG [13] 0.125 200
StAdv [43] 0.02 50
ReColor [21] 0.06 200
PPGD [22] 0.35 40
LPA [22] 0.35 40

https://github.com/hmdolatabadi/ACS
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D Extended Experimental Results

D.1 Extended Results of PAT vs. Unseen Attacks

Tab. 6 shows the full details of our experiments on PAT [22]. In each case,
we train ResNet-50 [12] classifiers using LPIPS [45] objective of PAT [22]. All
the training hyper-parameters are fixed. The only difference is that we enable
adversarial coreset selection as our method. During inference, we evaluate each
trained model against a few unseen attacks, as well as two variants of Perceptual
Adversarial Attacks [22] that the models are trained initially on. As can be
seen, adversarial coreset selection can significantly reduce the training time while
experiencing only a tiny reduction in the average robust accuracy.

D.2 Trade-offs

Here, we study the accuracy vs. speed-up trade-off in adversarial coreset se-
lection. For this study, we train our adversarial coreset selection method us-
ing different versions of Craig [27] and GradMatch [16] on CIFAR-10 using
TRADES. In particular, for each method, we start with the base algorithm and
add the batch-wise selection and warm-start one by one. Also, to capture the
effect of the coreset size, we vary this number from 50% to 10% in each case.
Fig. 4 shows the clean and robust error vs. speed-up compared to full adversarial
training. In each case, the combination of warm-start and batch-wise versions
of the adversarial coreset selection gives the best performance. Moreover, the
training speed increases as we gradually decrease the coreset size. However, this
gain in training speed is achieved at the cost of increasing the clean and robust
error. Both of these observations are in line with that of Killamsetty et al. [16]
around vanilla coreset selection.

D.3 Training with a Mixture of Coreset and Non-coreset Data

In this section, we run an experiment similar to that of Tsipras et al. [37].
Specifically, we minimize the average of adversarial and vanilla training in each
epoch. The non-coreset data is treated as clean samples to minimize the vanilla
objective, while for the coreset samples, we would perform adversarial training.
Tab. 7 shows the results of this experiment. As seen, adding the non-coreset data
as clean inputs to the training improves the clean accuracy while decreasing the
robust accuracy. These results align with the observations of Tsipras et al. [37]
around the existence of a trade-off between clean and robust accuracy.
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(a) (b)

(c) (d)

Fig. 4: Relative error vs. speed up curves for different versions of adversarial core-
set selection in training CIFAR-10 models using the TRADES objective. In each
figure, the coreset size is changed from 50% to 10% (left to right). (a, b) Clean
and robust error vs. speed up compared to full TRADES for different versions
of adversarial Craig. (c, d) Clean and robust error vs. speed up compared to
full TRADES for different versions of adversarial GradMatch.



ℓ∞-Robustness and Beyond: Unleashing Efficient Adversarial Training 25

T
ab

le
7:

P
er
fo
rm

an
ce

of
ℓ ∞

-P
G
D

ov
er

C
IF
A
R
-1
0
.
In

“
H
a
lf
-H

a
lf
”
,
w
e
m
ix

h
a
lf

a
d
ve
rs
a
ri
a
l
co
re
se
t
se
le
ct
io
n

sa
m
p
le
s
w
it
h

an
ot
h
er

h
al
f
of

cl
ea
n
sa
m
p
le
s
an

d
tr
ai
n
a
n
eu
ra
l
n
et
w
o
rk

si
m
il
a
r
to

[3
7
].
In

“
O
N
L
Y
-C

o
re
”
w
e
ju
st

u
se

a
d
ve
rs
a
ri
a
l
co
re
se
t

sa
m
p
le
s.

S
et
ti
n
gs

ar
e
gi
ve
n
in

T
ab

.
5.

T
h
e
re
su
lt
s
a
re

av
er
a
g
ed

ov
er

5
ru
n
s.

T
r
a
in

in
g

M
e
t
h
o
d

↑
C
le
a
n

(%
)

↑
R
A
C
C

(%
)

↓
T

(m
in
s)

O
N

L
Y

C
o
r
e

H
a
lf
-H

a
lf

O
N

L
Y

C
o
r
e

H
a
lf
-H

a
lf

O
N

L
Y

C
o
r
e

H
a
lf
-H

a
lf

A
d
v
.
C
r
a
ig

8
0
.3
6

8
4
.4
3

4
5
.0
7

3
9
.8
3

1
4
8
.0
1

1
5
2
.3
4

A
d
v
.
G
r
a
d
M
a
t
c
h

8
0
.6
7

8
4
.3
1

4
5
.2
3

4
0
.0
5

1
4
8
.0
3

1
5
3
.1
8

F
u
ll

A
d
v
.
T
ra

in
in
g

8
3
.1
4

4
1
.3
9

2
9
2
.8
7


