
Supplementary Material for SPIN: An Empirical
Evaluation on Sharing Parameters of Isotropic

Networks

Chien-Yu Lin1∗†, Anish Prabhu2∗, Thomas Merth2, Sachin Mehta2, Anurag
Ranjan2, Maxwell Horton2, and Mohammad Rastegari2

1 University of Washington, USA
2 Apple, Inc., USA

A Weight Sharing Search Space Characterization

A.1 Isotropic Network Case

Suppose we have an L layer isotropic network and a weight tensor budget of
P ∈ Z, where 0 < P ≤ L (recall that L

P is the share rate). When building
our network, we can choose between P different weight tensors for each layer
(sampling with replacement), so there are PL choices. Thus the search space for
parameter sharing can be described as Ω(L,P ) = PL.

We can define the size of the search space of topologies which use exactly P
parameter tensors as Ω̃(L,P ) = Ω(L,P )−Ω(L,P −1). This simply reduces the
size of the original search space by the number of topologies which have up to
P − 1 shared weight tensors.

A.2 “Staged” Network Case

Suppose we have a network with LN total layers, but with S discrete stages
(or, more generally, disjoint subsets of layers), where the weight tensors have
identical shape only to other weight tensors in their respective stage (or subset).
This is a common paradigm for many popular CNN backbone architectures, such
as ResNet [1], MobileNet [2], and DenseNet [3]. Without loss of generality, we
refer to all disjoint subset architectures as staged architectures.

We simplify the following analysis by assuming each stage of the network
has exactly LS layers. Then we define ΩS(LN , LS , P ) to be the number of non-
degenerate topologies for a staged network, staying below the P weight tensor
budget:

ΩS(LN , LS , P ) =

{
0, LN ≤ 0 ∨ P ≤ 0∑min(LS ,P )

i=1

(
P
i

)
Ω̃(LS , i)ΩS(LN − LS , LS , P − i)

(1)

∗Equal contribution.
†Work done while interning at Apple.



2 C. Lin et al.

It can be shown numerically that ΩS(LN , LS , P ) increases rapidly as a func-
tion of LS (see Figure 1 for a graphical representation). In other words, archi-
tectures closer to isotropic architectures support more options for parameter
sharing, when the overall number of layers is held constant.

Fig. 1: Log plot of search space sizes for various LS and P values for a depth
LN = 32 network. Recall that larger LS values correspond to a “more isotropic”
architecture.

B Weight Sharing in Vision Transformers (ViTs)

Table 1 shows results of parameter sharing for the DeiT architecture, which is
a popular variant of ViT. We experiment with plain weight sharing and weight
fusion techniques described in Section 3.2 on the DeiT-Ti and DeiT-S model,
both of which have 12 layers.

Compared to the baseline, the WS-DeiT-S model is able to get similar ac-
curacy, within 1 point Top-1 with half the parameters. At iso-parameters, the
WS-DeiT models significantly outperform non-weight-sharing models. Among
the weight sharing schemes, using weight fusion with pretrained weights can
consistently boost accuracy. For example, using weight fusion can increase ac-
curacy 0.55% on WS-Deit-Ti and 0.83% on WS-Deit-S compared to the plain
weight sharing version.

C Training Details

We describe the training details we used to produce the experiments through-
out this paper. To produce baseline accuracy of ConvMixer [6], DeiT [5] and
ConvNeXt [4], we follow the default training settings described in each model’s
original paper and the released source code as closely as possible.



SPIN 3

Model Depth
Fusion Share Params FLOPs ImgNet

Strategy Rate (M) (G) Acc(%)

Deit-Ti
12 - - 5.72 1.26 72.55
6 - - 3.05 0.64 63.11
4 - - 2.16 0.44 55.61

WS-DeiT-Ti 12 -
2 3.05 1.26 68.07
3 2.16 1.26 63.50

WS-DeiT-Ti 12 Mean
2 3.05 1.26 67.96
3 2.16 1.26 63.75

WS-DeiT-Ti 12 Scalar Weighted Mean
2 3.05 1.26 68.62
3 2.16 1.26 63.74

Deit-S
12 - - 22.05 4.61 80.52
6 - - 11.40 2.33 74.48
4 - - 7.85 1.58 67.77

WS-DeiT-S 12 -
2 11.41 4.61 78.61
3 7.87 4.61 76.67

WS-DeiT-S 12 Mean
2 11.41 4.61 79.44
3 7.87 4.61 77.11

Table 1: DeiT Top-1 accuracy on ImageNet-1k with different weight
fusion and share rates. All trained models are based off of DeiT-Ti (which
has 12 transformer layers). WS-DeiT stands for the weights sharing version. All
experiments use the Sequential sharing topology. The method with the clearly
highest performance is bold-faced for each parameter regime.

We train all models on ImageNet-1K dataset without additional data. For
ConvMixer, we use a learning rate of 0.01 and batch size of 64 for each GPU.
The data augmentations we use includes RandAugment, MixUp, CutMix and
random erasing. We use the AdamW optimizer with weight decay 2e-5 and a
cosine learning rate schedule with a single cycle. For ConvMixer-1536/20/7/3,
we train 150 epochs. For ConvMixer-768/32/14/3 and 512/16/14/9, we train for
300 epochs. For the Weight Sharing ConvMixer models, we use exact the same
training setting as each corresponding baseline model to train. It is worth noting
that we are able to show that the weight sharing ConvMixer can perform well
without any parameter tuning, but this architecture may have a different optimal
setting for these hyper parameters, for example due to having less parameters,
and proper tuning may further boost performance of our method.

For DeiT and ConvNeXt, we follow the same settings proposed in the re-
spective papers. All DeiT variants were trained with an effective batch size of
256 on 4 GPUs (note that the learning rate is scaled appropriately according to
their scaling rule).



4 C. Lin et al.

Network
Share Share Share Share Params FLOPs ImgNet
BN Bias Dwise Pwise (M) (G) Acc(%)

ConvMixer ✕ ✕ ✕ ✕ 20.5 5.03 74.93

WS-ConvMixer

✓ ✓ ✓ ✓ 10.84

5.03

Diverged
✕ ✓ ✓ ✓ 10.89 73.17
✕ ✕ ✓ ✓ 10.92 73.19
✕ ✕ ✕ ✓ 11.02 73.29

Table 2: Top-1 Accuracy on ImageNet ablating which operation within
a ConvMixer Block are shared. We consider sharing the BatchNorm, Bias
of convolutional layer, Depthwise Convolution, and Pointwise Convolution. The
model size used in this comparison is 768/32/14/3 for channel/depth/patch
size/kernel size. The sharing rate is 2. We apply no transformation or weight
fusion in this study.

D Ablation on Sharing Different Components in
ConvMixer Block

For the ConvMixer architecture, there are many components in each block we
can choose whether to share. These components include Pointwise and Depthwise
Convolution layer, bias for each Convolution layer, and the BatchNorm layer.
In Table 2, we provide a full ablation study on sharing all the components, and
gradually turn-off sharing on BatchNorm, Bias, and Depthwise Convolution, in
order of the number of parameters each component contains.

As Table 2 shows, Pointwise Convolution layer contains the majority of the
parameters of each block and only sharing Pointwise Convolution layer results
in the best accuracy. Therefore, in our main study, we only share weights for
Pointwise Convolution layers for ConvMixer models.

E Ablation on Weight Fusion Networks without Utilizing
Pretrained Weights.

In Section 3.2, we described weight fusion methods to fuse a pretrained net-
work’s weights as initialization for a weight sharing model and showed accuracy
improvement. Such weight fusion methods can also be applied without using a
pretrained network’s weights. To further understand the effect of the proposed
weight fusion techniques, we perform an ablation study on applying the same
weight fusion strategies with networks that are regularly initialized.

As results of the ablation study in Table 3 show, applying weight fusion to a
randomly initialized model does not improve accuracy. It is worth noting that,
after fusion, the number of effective weights will be the same as a vanilla weight
sharing model, so there is no increase in representational power. This ablation
study empirically shows that using the fused weights from a pretrained network



SPIN 5

Network
Weight Weight Params FLOPs Top-1
Init. Fusion (M) (G) Acc (%)

ConvMixer Regular ✕ 20.5 5.03 75.71

WS-ConvMixer
Regular ✕

10.84 5.03
74.29

Regular Choose First 74.25
Regular Mean 74.25

WS-ConvMixer
Pretrained Choose First

10.84 5.03
74.88

Pretrained Mean 75.28

Table 3: Ablations on whether using a pretrained network to initial-
ize a weight sharing network when using weight fusion. All experiments
were done with a ConvMixer with 768 channels, depth of 32, patch extraction
kernel size of 14, and convolutional kernel size of 3. All weight sharing Con-
vMixer models share groups of 2 sequential layers. We used slightly different
hyperparameters for this ablation study and have slightly higher accuracy for
WS-ConvMixers.

to initialize a weight sharing model (see Section 3.2) is what leads to improved
accuracy, rather than the weight sharing fusion alone.

F Further Model Analysis

In this section, we provide analysis to further understand why weight sharing is
effective for isotropic architectures. All analysis below is performed on the Con-
vMixer architecture. We first analyze the robustness of these models, followed
by further representation analysis with Centered Kernel Alignment (CKA).

F.1 Robustness to Label Noise

We analyze the robustness of our weight sharing model in the presence of label
noise. Our analysis follows [7]. We first choose a noise level l ∈ [0, 1]. This
corresponds to the fraction of training image labels to adjust. We then randomly
choose a fraction l of images from the training set and set their label to a random
category label. We then proceed with training as usual. Note that the labels are
unchanged after their initial alteration at the beginning of training. We do not
modify the evaluation set in any way. In Figure 2 we show that our weight
sharing ConvMixer using the weight fusion method described in Section 3.2 is
significantly more robust to noise than the baseline ConvMixer. We are able
to exceed the baseline model in absolute Top-1 at all noise levels above zero,
while halving the parameters of the model and iso-FLOPs. These results suggest
that our weight sharing models provide increased robustness, and part of our
empirical improvements in accuracy may be attributable to this property.



6 C. Lin et al.

Fig. 2: Label noise analysis of ConvMixers. The model size used in this com-
parison is 768/32/14/3 for channel/depth/patch size/kernel size. At any label
noise level above zero, the WSConvMixer + WeightFusion model outperforms
the baseline ConvMixer, with half the parameters and iso FLOP. This suggests
that our weight sharing method generates models that are more robust to noise,
and this may be part of the reason we find empirically compelling results.

Fig. 3: CKA analysis on vanilla WS-ConvMixer-768/32/14/3 model. We com-
pute pairwise analysis of WS-ConvMixer layer feature maps to the non-sharing
ConvMixer model using CKA. For this WS-ConvMixer model, it has 73.29%,
70.11%, 66.31% accuracy on ImageNet for share rates 2, 4, and 8 respectively

F.2 Further CKA Analysis on WS-ConvMixer

In this section, we provide more representational analysis using CKA on the
Weight Sharing (WS) ConvMixer. In Figure 3, we show that for various share
rates, the vanilla WS-ConvMixer does not have any clear pattern of layer-wise
representational similarity with the original ConvMixer model (768/32/14/3 ar-



SPIN 7

(a) WSConvMixer-512/16 with Weight Fusion. The original ConvMixer has 67.48%
accuracy on ImageNet. For WS-ConvMixer with Weight Fusion, it has 65.04%, 59.34%,
and 52.95% accuracy on ImageNet.

(b) WSConvMixer-768/32 with Weight Fusion. The original ConvMixer has 75.71%
accuracy on ImageNet. For WS-ConvMixer with Weight Fusion, it has 75.14%, 67.15%,
and 59.69% accuracy on ImageNet.

(c) WSConvMixer-1536/20 with Weight Fusion. The original ConvMixer has 78.03%
accuracy on ImageNet. For WS-ConvMixer with Weight Fusion, it has 78.47%, 75.76%,
and 71.4% accuracy on ImageNet.

Fig. 4: CKA analysis on WS-ConvMixer model with Weight Fusion. We com-
pute pairwise analysis of WS-ConvMixer layer feature maps to the non-sharing
ConvMxier model using CKA



8 C. Lin et al.

chitecture setting). It’s also worth noting the absolute value of similarity is quite
low for these models. On the other hand, in Figure 4, we show that in the
WS-ConvMixer models with weight fusion we see a clear relationship in the rep-
resentations learned by the weight sharing model compared to the original, as
well as significantly higher absolute similarity. This trend holds across multi-
ple architecture settings (2/16/14/9, 768/32/14/3 and 1536/20/14/3) and share
rates (2, 4, 8). This finding suggests that weight sharing models have the ability
to generate similar representations to the original models, even with significantly
less parameters, but need advanced training methods such as our weight fusion
strategy to achieve this in practice.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

2. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mo-
bile vision applications. ArXiv abs/1704.04861 (2017)

3. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks (2018)

4. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. arXiv preprint arXiv:2201.03545 (2022)

5. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers distillation through attention (2021)

6. Trockman, A., Kolter, J.Z.: Patches are all you need? CoRR abs/2201.09792
(2022), https://arxiv.org/abs/2201.09792

7. Wortsman, M., Horton, M., Guestrin, C., Farhadi, A., Rastegari, M.: Learning neu-
ral network subspaces. ArXiv abs/2102.10472 (2021)


