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1 Exploring Universal Set Design

We described the design of universal set in Section 3.4 of the paper and chose
Option 5 from Table 1. Since each option represents a different set of quantization
points, the choice of an option directly affects the composition of universal set
(SU ), which has a profound impact on quantization error and model accuracy
as well as hardware complexity. Figure 1 visualizes the universal sets of the five
options we considered.

Table 1: Exploring universal set design, SU = {a+ b | a ∈ A, b ∈ B}.
Option A B

1 {2−1, 2−2, 2−3, 0} {2−1, 2−2, 2−4, 0}
2 {1, 2−2, 2−4, 0} {2−1, 2−3, 2−5, 0}
3 {1, 2−1, 2−2, 2−3, 2−4, 0} {1, 2−1, 2−2, 2−3, 2−4, 0}
4 {1, 2−1, 2−2, 2−3, 2−4, 2−5, 0} {1, 2−1, 2−2, 2−3, 2−4, 2−5, 0}

5 (chosen) {1, 2−1, 2−3, 0} {1, 2−2, 2−4, 0}

We use the ImageNet dataset and ResNet-18 model to evaluate the five op-
tions. The result is summarized in Table 2. An important attribute of a universal
set is the number of combinations that it generates, since our algorithm searches
all combinations

(|SU |
N

)
where N represents the representational precision. For

example, Option 4 has the largest number of combinations (= 490, 314) and can
expect a smallest weight quantization error on average; however, it also has the
longest QPS search time (almost 2 days) and the highest hardware cost.

In addition, after determining the best QPS for each layer (i.e., QPS search),
we optimize the scale factor(s) using a calibration set, so that weights can be
partially re-mapped to better quantization points within each QPS according to
activation. Because of this additional step, smaller weight quantization error does
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Fig. 1: Distribution of quantization points (red points) of universal set for each
option.

not necessarily mean smaller accuracy drop. Our result in Table 2 does suggest
that Option 4 indeed has the highest accuracy when only weights are quantized.
However, in terms of the final quantization accuracy using a calibration set,
Option 3 shows the highest accuracy.

To estimate the relative hardware cost of different options we make the follow-
ing assumptions. First, we consider only the shifters part, which is the multiplier
part minus the adder. Though different options will lead to different adder and
accumulator sizes, for our comparison between the five options, a more com-
plicated multiplier also generates wider multiplication results, requiring wider
adder and accumulator. Because of this positive correlation, considering the
shifters’ complexity is sufficient. Second, we assume that the shifters part is
implemented with two MUXes and constant-amount shifters, as illustrated in
Figure 2. Constant-amount shifter is just bit selection (wires only), consuming
no logic gates.

Our hardware cost model is as follows: Cost of k-bitM -to-1 MUX = k(M−1),
which models the number of 1-bit 2-to-1 MUXes needed. In practice, various logic
optimizations will reduce the complexity of design differently (due to guaranteed
zero values in certain positions), which is ignored in our model. The value of M
is evident from the option definition or from Figure 2. The value of k is the width
of x plus the maximum shift amount, which may be different between Shifter 1
and Shifter 2.

We have finally selected Option 5, which has a reasonable QPS search time
of about 0.5 hour for ResNet-18 and also shows sufficiently high accuracy com-
parable to Options 2 and 3, and even higher than Option 4. Also importantly,
Option 5 has the lowest hardware cost together with Option 1.

2 Visualization

We provide a visualization example of the results we presented in the paper.

2.1 Object Detection

For object detection, we have obtained results using the Pascal VOC 2007 test
set and the baseline model is SSD-lite (mAP 70.84%) [2] with MobileNetV2 [3]
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Table 2: Exploration result of universal set design (*: chosen).
Option 1 2 3 4 5*

|SU | 12 16 17 23 15
QPS Size 495 12,870 24,310 490,314 6,435

QPS search time 0.03h 1h 2h 40h 0.5h
Relative HW cost (4-bit input) 45 51 80 108 45

Top-1 (wgt. only) 67.14 68.63 68.57 68.69 68.50
Top-1 (final opt.) 68.79 69.49 69.51 69.39 69.46
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Fig. 2: Shifters design (multiplier minus an adder) for each option.

backbone. Figure 3 shows the visualized results. In both 4-bit and 3-bit cases,
the boundary boxes are drawn very similarly to those of the baseline. However,
as we have suggested in the paper, when weight precision is reduced to 3-bit,
mIoU drops by about 3.8% point, but its detection performance is still very
acceptable.

(a) FP32 (68.59%) (b) W4A8 (68.21%) (c) W3A8 (64.72%)

Fig. 3: Object detection results (mAP).
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2.2 Semantic Segmentation

For semantic segmentation, we have obtained results using the Pascal VOC 2012
test set and the baseline model is DeepLabV3+ (mIoU 70.81%) [1] with Mo-
bileNetV2 [3] backbone. Figure 4 shows the visualized results. Overall our results
show a similar trend as that of the object detection results. Our 4-bit results
have similar quality as the baseline. At 3-bit we observe noise in the case of
ambiguous images such as the bottom center case, but the overall segmentation
performance is still quite acceptable.

(a) Orig. image (b) FP32 (70.81%) (c) W4A8 (68.96%) (d) W3A8 (61.94%)

Fig. 4: Semantic segmentation results (mIoU).
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