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1 Visualization of The Adopted Supernet Architecture

We visualize the adopted supernet following [1] in Fig. 1. It begins with two
3×3 convolutions with stride 2, which are followed by five fusion modules and
five parallel modules to gradually divide it into four branches of decreasing res-
olutions, the learned features from all branches are then merged together for
classification or dense prediction.
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Fig. 1. Visualization of the adopted supernet architecture, where min and mout denote
the number of input and output branches in the fusion module; nsb and nc represent
the number of searching blocks and channels in the parallel module, respectively.
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Table 1. Comparing ST with “ST w/ RP” and “ST w/ RR-Init” on both Cityscapes
and ADE20K under 80% and 90% sparsity.

Methods FLOPs

Cityscapes (p = 80%)

FLOPs

Cityscapes (p = 90%)
mIoU mAcc aAcc mIoU mAcc aAcc

S+P w/ RP 405M 1.30% 5.17% 21.96% 203M 1.15% 5.26% 21.9%
ST w/ RP 397M 20.17% 27.57% 68.73% 200M 16.55% 23.83% 65.90%
ST w/ RR-Init 397M 56.88% 67.33% 92.62% 200M 52.96% 62.66% 91.91%
ST 397M 69.77% 79.76% 95.12% 200M 66.61% 76.30% 94.63%

Methods FLOPs

ADE20K (p = 80%)

FLOPs

ADE20K (p = 90%)
mIoU mAcc aAcc mIoU mAcc aAcc

S+P w/ RP 308M 0.06% 0.66% 6.54% 154M 0.01% 0.66% 1.72%
ST w/ RP 317M 8.58% 11.93% 60.21% 159M 4.98% 7.19% 55.30%
ST w/ RR-Init 317M 21.24% 30.62% 68.57% 159M 19.49% 28.46% 67.26%
ST 317M 31.19% 43.10% 74.82% 159M 27.82% 39.49% 73.37%

Table 2. ST variants transfer validation tests under 90% sparsity.

Methods

ADE20K → Cityscapes

Methods

Cityscapes → ADE20K
mIoU mAcc aAcc mIoU mAcc aAcc

ST w/ RP 10.51% 14.42% 61.28% ST w/ RP 6.95% 10.1% 57.7%
ST w/ RR-Init 46.19% 54.92% 90.88% ST w/ RR-Init 14.82% 21.02% 65.54%
ST 62.91% 73.32% 93.82% ST 20.83% 29.95% 69.00%

2 SuperTickets (ST) vs. Random Pruning (RP) and
Random Re-Initialization (RR-Init).

We compare the proposed SuperTickets (ST) with both the “ST w/ RP” and
“ST w/ RR-Init” in Table 1. We consider two datasets under 80% and 90%
sparsity: ST consistently outperforms the two baselines, achieving on-average
36.28%/42.03%/21.95% and 11.20%/12.27%/4.34% mIoU/mAcc/aAcc improve-
ments over “ST w/ RP” and “ST w/ RR-Init”, respectively, under a comparable
number of parameters and FLOPs. These experiments show that SuperTickets
performs better than both RP and RR-Init, which is consistent with the LTH
finding.

Transferability of ST vs. RP and RR-Init. Similarly, we compare the
transferability of the three ST variants when transferring them across different
datasets, including (1) ADE20K → Cityscapes or (2) Cityscapes → ADE20K. As
shown in Table 2, ST achieves on-average 33.14%/39.38%/21.92% and 11.37%/13.
67%/3.20% mIoU/mAcc/aAcc improvements over the “ST w/ RP” and “ST w/
RR-Init” baselines, respectively, indicating that RP and RR-Init are inferior in
transferability as compared to the proposed ST.

3 Clarification of the LTH Settings.

There are two confusing settings when talking about LTH: (1) directly test the
accuracy of the found structure and the trained weights; and (2) the weights
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Table 3. Comparing ST w/ various LTH settings (90% sparsity).

Methods

Cityscapes (p = 90%)

Methods

ADE20K (p = 90%)
mIoU mAcc aAcc mIoU mAcc aAcc

ST w/ RR-Init 52.96% 62.66% 91.91% ST w/ RR-Init 19.49% 28.46% 67.26%
ST w/ LT-Init 59.63% 70.24% 93.33% ST w/ LT-Init 25.32% 36.76% 71.33%
ST w/ ELT-Init 65.82% 76.74% 94.54% ST w/ ELT-Init 25.79% 37.33% 72.10%
ST w/ LLT-Init 67.17% 77.03% 94.73% ST w/ LLT-Init 28.51% 40.63% 73.49%
ST w/o Retrain 66.61% 77.03% 94.73% ST w/o Retrain 27.82% 39.49% 73.37%

are restored to their initial value and trained with the obtained mask to obtain
test accuracy. We tried both of the aforementioned settings and find the former,
i.e., directly testing the accuracy of the found structure and trained weights, has
already achieved good results. This is another highlight of our work, as it can
help to largely save the retraining time. Furthermore, to address your concern, we
re-initialize the SuperTickets to (1) their initial values, following the origin LTH
(“ST w/ LT-Init”) and (2) early or (3) late stages following [2] (“ST w/ ELT-Init
or LLT-Init”), and compare them with the RR-Init counterparts. From Table 3,
we can see that (1) ST under all LTH settings achieves better accuracy than
RR-Init, indicating the effectiveness of ST; (2) vanilla LT-Init underperforms
both ELT-Init and LLT-Init under ST settings, consistent with [2]; and (3) ST
w/ ELT-Init or LLT-Init achieves comparable or slightly better accuracy than
ST w/o Retrain at a cost of retraining.

4 Speedups in terms of Inference Time

In addition to the number of parameters and FLOPs, we measure the inference
FPS and speedups on both 1080Ti GPUs and a SOTA sparse DNN inference
accelerator [4]. As shown in Table 4, ST achieves on par or even higher (i.e.,
1.8×∼2.9× speedups) FPS on GPUs and much reduced accelerator time (i.e.,
2.9×∼4.1× speedups) on [4] than the baselines, thanks to simultaneous archi-
tecture searching and parameter pruning (i.e., 2-in-1) and ST.

Table 4. ST vs. typical baselines on Cityscapes, in terms of inference time measured
on both GPUs and sparse accelerators.

Model Params FLOPs mIoU GPU FPS Sparse Acc. Time

BiSeNet 5.8M 6.6G 69.00% 105.8 180.8ms
DF1-Seg-d8 - - 71.40% 136.9 181.7ms
FasterSeg 4.4M - 71.50% 163.9 142.4ms
SqueezeNAS 0.73M 8.4G 72.40% 117.2 198.5ms

ST (p = 50%) 0.63M 1.0G 72.68% 310.7 48.3ms
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(a) Human Pose Estimation

(b) Semantic Segmentation

Fig. 2. Visualization of the human pose estimation on COCO keypoint dataset and
the streetview/semantic labels on Cityscapes dataset under different pruning ratios.

5 Discussions

Limitations of Transferred SuperTickets. Although identified SuperTickets
can transfer with only classifiers as task-specific, there is still a limitation in the
transferred SuperTickets. That is, transferred SuperTickets cannot surpass those
SuperTickets directly found on the target datasets/tasks. Moreover, when the
sparsity is low (e.g., 30%), the transferred SuperTickets will underperform both
SuperTickets and S+P. This is counterintuitive and opposite to the observation
in compressing pretrained models [3], where low pruning ratios do not hurt the
accuracy after transferring while overpruning leads to under-fitting. It implies
that the dedicated search is necessary when pruning ratio is relatively low; while
for high sparsity, the impacts of neural architectures will be less.

Visualization and Discussion. We visualize the results of SuperTickets
and S+P baselines on COCO keypoint and Cityscapes datasets under different
pruning ratios, as shown in Fig. 2. We observe that S+P baselines work but
miss some keypoints or semantic understandings under medium sparsity (e.g.,
70%) while collapse under high pruning ratios (e.g, 90/95%); In contrast, our
identified SuperTickets consistently work well among a wide range of pruning
ratios, validating the effectiveness of our proposed SuperTickets.

6 More Visualization of Visual Recognition Results

We further visualize the results of SuperTickets and S+P baselines on COCO
keypoint and Cityscapes datasets under different pruning ratios, as shown in Fig.
3 and Fig. 4, respectively. We observe that S+P baselines work but miss some
keypoints or semantic understandings under medium sparsity (e.g., 70/80%)
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while collapse under high pruning ratios (e.g, 90/95%); In contrast, our identi-
fied SuperTickets consistently work well among a wide range of pruning ratios,
validating the effectiveness of our proposed SuperTickets.
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Fig. 3. Visualization of the human pose estimation on COCO keypoint dataset under
various pruning ratios.
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Fig. 4. Visualization of the streetview/semantic labels on Cityscapes dataset under
various pruning ratios.


