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Appendix A. Proofs of SQRs properties

All SQRs have natural properties of the quantization error – the same number
of minima, symmetry with respect to grid points and equal rights of grid points.
Namely, the following properties hold:

Proposition 1. Any SQR ϕ(x):
1) has exactly rt − rb + 1 roots – integers from segment [rb, rt], and all of

them are global minima of this function, and this function does not have other
local minima.

2) is periodic on the segment [rb, rt] with period 1.
3) is even on the segment [r − 1

2 , r + 1
2 ] for every root r except rb and rt:

ϕ(r − x) = ϕ(r + x) for any x ∈ [− 1
2 ,

1
2 ] where ϕ(r) = 0, r ̸= rb, rt.

Proof. It follows from the order precerving property that the set of minima of
function ϕ(x) coincides exactly with the set of minima of MSQE(x). Since these
points are the roots of MSQE(x), it follows from the equivalence property that
they are also the roots of ϕ(x), which gives us (1). It also follows from the
order precerving property that MSQE(x1) = MSQE(x2) ⇔ ϕ(x1) = ϕ(x2) if
x1, x2 ∈ [rb, rt]. In this connection, properties (2) and (3) follow from similar
properties of MSQE(x).

Another property of SQRs is that for small quantization errors the values of
used regularizers can be used as an estimate of the quantization error:

Proposition 2. For any SQR ϕ and s > 0 the following relations hold: there is
C > 0 that

s2ϕ
( x̄
s

)
= CMSQE(x̄, s) + o(MSQE(x̄, s))

⋆ These authors contributed equally to this work.



2 K. Solodskikh, V. Chikin, R. Aydarkhanov et al.

for MSQE(x̄, s) → 0, and s2ϕ
( x̄
s

)
= O(MSQE(x̄, s))

for ∥x̄∥ → ∞, x̄ ∈ Rk.

Proof. From the properties of equivalence and smoothness it follows that ϕ(n) =
0 and ϕ′(n) = 0 for each integer n from the segment [rb, rt]. Consider the Taylor
series of the function ϕ(x) at the point n. Since ϕ(x) ∈ C2(R), we have

ϕ(x) =
1

2
ϕ′′(x)(x− n)2 + o

(
(x− n)2

)
, x → n.

Since MSQE(x) = (x− n)2 for any x ∈ [n− 1
2 , n+ 1

2 ], we get that

ϕ(x) =
1

2
ϕ′′(x)MSQE(x) + o

(
MSQE(x)

)
, MSQE(x) → 0.

Considering that the values of functions MSQE(x̄) and ϕ(x̄) on the vector x̄ are
average of the values of these functions from the components of x̄, as well as the
equality MSQE(x̄, s) = s2MSQE

(
x̄
s

)
, we obtain the first statement. The second

statement is obtained directly from the equivalence property.

Recall that we are considering the following Lagrange function minimization
in the domain of definition of parameters (W, sw, sa):

E
[
L
(
F (W, ξ)

)]
+ λw

∑
i

s2wi
ϕ

(
Wi

swi

)
︸ ︷︷ ︸

Lw

+

+λa

∑
i

E

[
s2ai

ϕ

(
Ai

sai

)]
︸ ︷︷ ︸

La

→ min .

(1)

Solution of this problem is also a solution of the main loss minimization problem
in the compact domain Ω where MSQEw and MSQEa are also restricted. The
next theorem shows how Ω relates with quantization constraints.

Theorem 1. For any SQR ϕ and for any λw, λa > 0 each solution to opti-
mization problem (1) in the domain of definition of parameters (W, sw, sa) is a
solution to optimization problem:

E
[
L
(
F (W, ξ)

)]
→ min

Ω
(2)

in the some region Ω of parameters (W, sw, sa), where for some positive numbers
Cmin

w , Cmin
a , Cmax

w and Cmax
a the following relations hold:{

MSQEw ≤ Cmin
w , MSQEa ≤ Cmin

a

}
⊂ Ω ⊂

⊂
{
MSQEw ≤ Cmax

w , MSQEa ≤ Cmax
a

}
.

(3)
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Proof. In this theorem, we assume that the main loss E
[
L
(
F (W, ξ)

)]
is a dif-

ferentiable function of weights W . Let (W 0, s0w, s
0
a) be a solution of problem

LQ = E
[
L
(
F (W, ξ)

)]
+ λw

∑
i

s2wi
ϕ

(
Wi

swi

)
︸ ︷︷ ︸

Lw

+

+λa

∑
i

E

[
s2ai

ϕ

(
Ai

sai

)]
︸ ︷︷ ︸

La

→ min .

(4)

Consider the following minimization problem with constraints:
E
[
L
(
F (W, ξ)

)]
→ min,

Lw ≤ Lw(W
0, s0w) = C1,

La ≤ La(W
0, s0a) = C2.

(5)

Denote the domain {Lw ≤ C1, La ≤ C2} by Ω. Point P0 = (W 0, s0w, s
0
a) satisfies

the necessary conditions of a local minimum for problem 4, i.e. dLQ|P0
= 0.

This means that for this point and a set of numbers (λ0, λ1, λ2) = (1, 1, 1) the
following conditions are satisfied:

d
(
λ0E

[
L
(
F (W, ξ)

)]
+ λ1λwLw + λ2λaLa

)∣∣
P0

= 0,

λ1

(
λwLw(W

0, s0w)− λwC1

)
= 0,

λ2

(
λaLa(W

0, s0a)− λaC2

)
= 0,

which are the necessary conditions for a local minimum for problem 5. More-
over, if the point (W 0, s0w, s

0
a) is a local minimum of LQ, then there exists a

neighborhood U of this point such that for any (W, sw, sa) from U we have
LQ(W, sw, sa) ≥ LQ(W

0, s0w, s
0
a). Consider the neighborhood UΩ = U ∩Ω of the

point (W 0, s0w, s
0
a) in the domain Ω. We have that for any point (W, sw, sa) from

UΩ the inequalities LQ(W, sw, sa) ≥ LQ(W
0, s0w, s

0
a), Lw(W, sw) ≤ Lw(W

0, s0w)
and La(W, sa) ≤ La(W

0, s0a) are satisfied, which means that E
[
L
(
F (W, ξ)

)]
≥

E
[
L
(
F (W 0, ξ)

)]
, i.e. the point (W 0, s0w, s

0
a) is a local minimum for problem 5.

From the fact that for a given SQR ϕ the inequality aMSQE(x) ≤ ϕ(x) ≤
bMSQE(x) holds for some a, b ∈ R, 0 < a < b, it follows that

aMSQE(x̄, s) ≤ s2ϕ
( x̄
s

)
≤ bMSQE(x̄, s)

for any s > 0 and x̄ ∈ Rk. In turn, this implies the inequalities aMSQEw ≤
Lw ≤ bMSQEw and aMSQEa ≤ La ≤ bMSQEa. From these inequalities it
follows that {

MSQEw ≤ C1

b
, MSQEa ≤ C2

b

}
⊂ Ω ⊂{

MSQEw ≤ C1

a
, MSQEa ≤ C2

a

}
.
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Denoting the constants in the right-hand sides by Cmin
w , Cmin

a , Cmax
w and Cmax

a ,
we complete the proof of the theorem.

Proposition 3. QSin(x) is SQR.

Proof. Inequality x ≤ sin(πx) ≤ πx holds on the segment [0, 1
2 ], which implies

that inequality x2 ≤ QSin(x) ≤ π2x2 holds for x ∈ [− 1
2 ,

1
2 ]. Since the QSin(x) is a

periodic function on the segment [rb, rt] and the equality QSin(x) = π2MSQE(x)
holds for x ∈ R \ [rb, rt], we obtain the equivalence property:

MSQE(x) ≤ QSin(x) ≤ π2 MSQE(x), ∀x ∈ R.

The order precerving property follows from the monotonicity of QSin(x) on the
segments [− 1

2 , 0] and [0, 1
2 ], the symmetry of QSin(x) with respect to 0 on the

segment [− 1
2 ,

1
2 ] and the periodicity of QSin(x). The smoothness of QSin(x) is

checked directly.

Appendix B. Quantization of continuous distributions

Consider the problem of minimizing MSQE[ξ](s) by setting the scale factor s
for random variable ξ with finite first and second moments. We compare the
functions

MSQE[ξ](s) = π2s2
∫
R

(
x

s
− QU (x)

s

)2

pξ(x)dx,

QSin[ξ](s) = s2
∫
R
QSin

(x
s

)
pξ(x)dx.

It is easy to see that this functions monotonically tending to π2Var(ξ) while
s → 0 or s → ∞. This means that optimal value for distribution ξ exists. We
investigated the behavior of these functions for various distributions ξ. For our
empirical studies we used distributions that well model the values of weights
and activations of neural networks – normal and Laplace distributions, as well
as for normal and Laplace distributions with subsequent use of ReLU. As a
result of our empirical studies, we conclude that QSin[ξ](s) is a good estimation
of MSQE[ξ](s) – during our experiments for different distributions ξ we observed
that the optimal value s for problem MSQE[ξ](s) → min is close enough to the
optimal value s for problem QSin[ξ](s) → min (see Figure 2).

Appendix C. Histograms of weights

We provide histograms of weights distribution for models which were trained
with QSin regularizer. To better show the dynamic of weights distribution evo-
lution we include histograms from several epochs. We have compared weights
distributions of networks trained by QSin and LSQ methods. On the Figure 1 we
can see histograms of convolution weights from ESPCNN network. The model
used consists of 4 convolutions, and we provide histograms for each of them.
Weights histograms of the network trained by QSin are closer to categorical
distribution than weights histograms obtained using LSQ method.
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Appendix D. Training configurations

In practice, as noted in Algorithm 1, instead of minimizing the loss LQ relative
to its variables, we alternately minimize the loss E

[
L
(
F (W, ξ)

)]
+λwLw(W, sw)

relative to the variables (W, sw) and the loss λaLa(W, sa) relative to scale factors
sa for fixed values of (W, sw). This corresponds to the minimization of the loss
LQ with transferring of gradients of the regularizer La only on the scale factors
sa. Qualitative tuning of scale factors for activations is performed due to the
properties of minimization problem for function QSin[ξ](s) (see Appendix B),
and we follow this approach in order to reduce restrictions on weights during
quantization, since we do not need to adjust weights for quantization of activa-
tions.

Image classification In these experiments we quantized weights and activations
of all layers of model except first layer and last layers. For 8 bit quantization we
have used round free optimization approach, and for 4 bit quantization we have
used STE on activations during training. For all eperiments we have used SGD
optimizer with momentum equals 0.9 and constant value of λa equals 1.

On Cifar-10, we trained ResNet-20 models quantized to 4 and 8 bits using
following algorithms: QSin, MSQE, SinReQ, LSQ, TF QAT. We also include
results of the PACT method. In a case of 8 bit quantization we have trained
networks during 5 epochs with constant learning rate equals 0.001 and λw =
1000. In a case of 4 bit quantization we have start from learning rate equals 0.01
and adjust it by multiplication on 0.1 on 15 and 30 epochs. For regularization
multiple we set λw = 1 at the start and adjust it value by multiplication on 10
on 15 and 30 epochs. Whole training procedure took 60 epochs.

On Imagenet, we have trained MobileNet-v2 models quantized to 4 bits and
8 bits using QSin, MSQE, TF QAT, LSQ. In a case of 8-bit we have trained
networks during 4 epochs with constant learning rate equals 0.001 and constant
λw = 1000. In a case of 4-bit we have trained networks during 90 epochs with ini-
tial learning rate equals 0.01 and initial λw = 1. We adjust learning rate each 30
epochs by multiplication on 0.1 and adjust λw each 30 epochs by multiplication
on 10.

Appendix E. Inference samples

See examples of inference samples for super-resolution task in Figures 3.
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Fig. 1: Histograms of the weights of all convolutions of the ESPCNN model for
image super-resolution, comparison of LSQ and QSin algorithms.
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N(0, 1), 4 bit. N(0, 1) followed by ReLU, 4 bit.

Laplace(0, 1), 4 bit. Laplace(0, 1) followed by ReLU, 4 bit.

N(0, 1), 8 bit. N(0, 1) followed by ReLU, 8 bit.

Laplace(0, 1), 8 bit. Laplace(0, 1) followed by ReLU, 8 bit.

Fig. 2: Graphs of functions QSin[ξ](s) and MSQE[ξ](s) for normal and Laplace
distributions ξ and different bitwidths.
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TF QAT LSQ MSQE QSin Full precision

TF QAT LSQ MSQE QSin Full precision

TF QAT LSQ MSQE QSin Full precision

TF QAT LSQ MSQE QSin Full precision

Fig. 3: 8 bit quantization of image super-resolution model: comparing of different
methods. (TF is the abbreviation of TensorFlow)


