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Abstract. Neural network quantization techniques have been a prevail-
ing way to reduce the inference time and storage cost of full-precision
models for mobile devices. However, they still suffer from accuracy degra-
dation due to inappropriate gradients in the optimization phase, espe-
cially for low-bit precision network and low-level vision tasks. To alleviate
this issue, this paper defines a family of equivalent smooth regularizers
for neural network quantization, named as SQR, which represents the
equivalent of actual quantization error. Based on the definition, we pro-
pose a novel QSin regularizer as an instance to evaluate the performance
of SQR, and also build up an algorithm to train the network for integer
weight and activation. Extensive experimental results on classification
and SR tasks reveal that the proposed method achieves higher accu-
racy than other prominent quantization approaches. Especially for SR
task, our method alleviates the plaid artifacts effectively for quantized
networks in terms of visual quality.

Keywords: network quantization, smooth regularizer, equivalence, gra-
dient, low-level vision task

1 Introduction

Deep Neural Network (DNN) has dramatically boosted the performance of vari-
ous practical tasks due to its strong representation capacity, for example, image
classification [19], image translation [7] and speech recognition [14]. Along with
the requirements of deploying DNN into mobile devices increasing, it has been
necessary to develop low-latency, efficient and compact networks. Recently, large
amounts of approaches have been proposed to solve this problem, including net-
work pruning [25,11], quantization [18,9] and adder neural network [2].

Network quantization is one of the most appealing way to reduce the infer-
ence latency, energy consumption and memory cost of neural networks. Since
low-bit integer tensors (weight/activation) and integer arithmetics are employed
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(a) Function and gradient curve. (b) Effect of gradients around transition point.

Fig. 1: The comparison of SQR and MSQE [4] regularizer. SQR is smooth ev-
erywhere instead of the unsmoothness of MSQE in each transition point, and
represents the equivalent of actual quantization error, which allows to obtain
better gradient behavior in neighborhood of transition points.

in quantized network, the model size and computation consumption could be
decreased significantly. The advantages of quantization network on low precision
hardware has been demonstrated with multiple systems [10,18], but it still suffers
from accuracy degradation due to inappropriate gradients in the optimization
phase, especially for low-bit precision network and low-level vision tasks.

Minimization of objective function for quantized neural networks in general
case is a hard optimization problem since the gradient is either zero or undefined.
The prominent Quantization Aware Training (QAT) algorithms [16,5,31] usually
adopted the Straight-Through Estimator (STE) [1,18,3] strategy to solve this
gradient issue, which approximates the gradient of the rounding operator as 1.
Although several further approaches [28,22] have been proposed to refine the
gradient approximation, such kind of algorithms still suffer from the gradient
error, especially for lower-bit quantization. Another alternative way is to train
the network with regularizer [4,8] of quantization error to generate the quantized
model, where gradients from accuracy loss could be propagated effectively.

Unfortunately, the gradient of the most conventional regularizer for quantiza-
tion, mean square quantization error (MSQE) [4], is undefined in each transition
point which is illustrated in Fig. 1. It hinders the quantization error from being
propagated to the weights of each layer. What’s worse, steep gradients around
transition points would dominate the direction of update step for the joint objec-
tive, which is prone to reach the closest grid point instead of the optimal point
of the accuracy loss (see Fig. 1(b)). SinReQ [8] explored a smooth regularizer for
quantization to alleviate the gradient issue. However, its variation trend outside
of quantization segment is quite different from the actual quantization error,
which results in high clamping error and significant accuracy degradation. To
reduce the quantization error, the prime regularizer should not only be smooth
everywhere but also represent the equivalent of actual quantization error. Hence,
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this paper defined a family of equivalent smooth regularizers for neural network
quantization, called SQR. Based on this definition, we proposed a novel QSin
regularizer as an instance to evaluate the performance of SQR, and also built up
an algorithm to train the network for integer weight and activation. The quan-
tization error could be reflected effectively and propagated to weights smoothly.
To evaluate the performance and generality of our approach, extensive experi-
ments on classification and SR tasks were conducted. The results reveal that the
proposed method achieves higher accuracy than other prominent approaches.
Especially for SR task, our method alleviates the plaid artifacts effectively for
quantized networks in terms of visual quality, since the pixel value regression is
more easily affected by the quantization error.

The main contributions of this paper are threefold:

1. We defined a novel family of equivalent smooth regularizer for quantization
and analyzed its properties theoretically.

2. We proposed a novel QSin regularizer belonging to SQR and built up a
general algorithm to train the network with weight and activation quantiza-
tion for any bit-width. It is important to note that our regularizer allows to
train quantized network without weights rounding comparing with the most
quantization algorithms.

3. Our method works stable and achieves state-of-the-art results on wide spec-
tra of computer vision tasks, including image classification and super-resolution
tasks. What’s more, our method could alleviate the plaid artifacts effectively
for quantized networks.

2 Related Works

Quantization is one of the most important technique for model compression,
which attracts many researchers to investigate it. In the last decade, many quan-
tization approaches were proposed to improve the performance of quantization
network. According to the criterion of whether training the quantized network or
not, the quantization methods could be roughly divided into two categories: Post
Training Quantization (PTQ) [23] and Quantization Aware Training (QAT) [16].

Post training quantization. Post training quantization algorithms aim at quan-
tizing the trained full precision network into low-precision one with compact
unlabeled calibration set or even without any data. Nowadays such algorithms
have achieved significant progresses in quantization of classification networks.
Nagel et al. [23] employed the minimum and maximum values of weights to define
weight quantization parameters and moving average of minimum and maximum
values to define activations quantization parameters, respectively. Based on this
method, Hubara et al. [17] further explored tuning batch normalization layer
and boosted the performance of quantized network significantly. Such kind of
methods are attractive because of quick implementation, setup and application
but usually lead to accuracy drop comparing with full precision networks.
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Quantization aware training To reduce the accuracy drop of quantized network,
numerous quantization aware training algorithms [5,31,3] have been proposed,
which utilize stochastic gradient descent technique with quantized weights and
activations on forward pass stage but full precision weights on backward pass
procedure. Since the gradient of round function is zero or undefined everywhere,
Straight Through Estimator [1] has been proposed to propagate the derivative.
LSQ [9] method was proposed to further improve the accuracy via learnable
step size. More quantization parameters were suggested to learn with end-to-
end optimization manner [30]. To alleviate the gradient error problem, various
approaches (DSQ [12], PACT[3], QuantNoise [28], etc. ) were introduced with
progressive way to train the quantization network. Unfortunately, these methods
still cannot solve this issue thoroughly.

Quantization through regularization Another alternative way of generating quan-
tized network is to train the network with regularizer [4,8,24] of quantization
error, where gradients from accuracy loss could be propagated smoothly. Choi et
al. [4] firstly proposed regularizer term of mean squared quantization error
(MSQE) for weight and activation quantization. However, the gradients of MSQE
regularizer in transition points are undefined, which prevents the quantization
error from propagating. SinReQ [8] explored periodic functions as regularizer for
weight quantization. Unfortunately, its variation trend outside of quantization
segment is quite different from the actual quantization error, which results in
high clamping error and significant accuracy degradation.

3 Preliminaries and Motivation

Here we firstly briefly introduce the basic principles of neural network quantiza-
tion, and then discuss the difficulty of quantization network training.

We consider neural network F(W,X) as an ordered graph with n layers, and
each layer corresponds to the function Fi(Wi,Ai), where Wi and Ai denote the
parameter tensor and input features of the i-th layer, respectively. For conve-
nience, we denote the set {Wi}Ni=1 as W and an input data tensor with X. The
X could be simply modeled by continuous distribution ξ.

Quantization Network quantization aims at reducing the precision of both pa-
rameters and activations with minimal impact on the representation ability of
full-precision models. Firstly, we need to define a function which can quantize
real value set into a finite set. The conventional uniform quantization function
QU is defined as follows:

QU (x) =


⌊x⌉, if rb ≤ x ≤ rt,

rb, if x < rb,

rt, if x > rt,

(1)

where x is the input of function. rb and rt denote the minimum and maximum
of clipping range, respectively. ⌊·⌉ is the round-to-nearest operator. To quantize
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a real value into an integer, we usually need three quantization parameters:
scale factor s, zero-point and bit-width. For convenience, here we employ the
symmetric uniform quantization to analyze problems. Then, equation 2 could be
utilized to quantize the weights and activations.

q = QU

(x
s

)
, (2)

where x is the real value, and q is the quantized integer. When both weights
and activations are quantized into integer, computation could be executed with
an integer-arithmetic way, which results in significant acceleration on hardware.
The full-precision layer Fi(Wi,Ai) is replaced by the quantized layer:

Fq
i = swi

sai
Fi

(
QU

(
Wi

swi

)
,QU

(
Ai

sai

))
, (3)

where swi
and sai

denote the scale factor of weight and activation of the i-th
layer, respectively.

Mean Squared Quantization Error Considering network quantization problem
as an optimization problem with special constraints, Choi et al. [4] proposed the
mean-squared-quantization-error (MSQE) as regularization term for weight and
activation quantization, which is defined as follows:

MSQE(V; s) =
1

K

∑
xj∈V

|xj − s · QU

(xj

s

)
|2, (4)

where V denotes the input tensor with K components. It reflects the error be-
tween original full-precision value and its quantized value. To constraint the
weights and activations of the whole network, the regularizer term should con-
tains the quantization error of each layer. The complete MSQE regularizer terms
for weights (MSQEw) and activations (MSQEa) are defined as Eq. 5.

MSQEw =
1

N

N∑
i=1

MSQE(Wi, swi
), MSQEa =

1

N

N∑
i=1

MSQE(Ai, sai
). (5)

Let L is the original objective function of full-precision neural network F(W,X).
Then, we consider the quantization network training issue as a neural network
optimization problem with quantization constraints:

E
[
L
(
F(W,X)

)]
→ min,

MSQEw < Cw,

E[MSQEa] < Ca.

(6)

where Cw and Ca denote the thresholds restricting the quantization error for
weights and activations. E[·] is the expectation among the whole database. The-
oretically, we can not effectively reach the minimization of Lagrange function 6
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since MSQE is not smooth. From Fig. 1, we can see that the gradient of MSQE
is undefined in each transition point, which limits the performance of quantiza-
tion network. To address this issue, we define a class of Smooth Quantization
Regularizers (SQR) which represents the equivalent of actual quantization error.

4 SQR: Equivalent Smooth Quantization Regularizer

Smooth property of regularizer is friendly to network optimization, which is
helpful to solve the gradient problem. Here, we propose a family of smooth
quantization regularizer to replace the MSQE regularizer, which represents the
equivalent of actual quantization error and allows to obtain better gradient be-
havior in neighborhood of transition points.

4.1 Definition of SQR

From Eq. 4 and Fig. 1, we can observe that the MSQE regularizer is not a smooth
function due to the quantization operator. To acquire the smooth regularizer
for quantization, we should deal with the transition points carefully. Besides
the smooth property, we also hope that the smooth regularizer could effectively
reflect the trend of quantization error and preserve the same number of minimum
with MSQE. Then, we can define the ideal smooth quantization regularizers
(SQR) as follows. Here we abbreviate the quantization regularizer MSQE(x; s)
as MSQE(x) for simplicity.

Definition 1. With the same constant scale factor s with MSQE(x), function
ϕ(x) is a Smooth Quantization Regularizer (SQR) for the uniform grid of integers
with the segment [rb, rt] when it satisfies the following three properties:

1) Order preserving. Function ϕ(x) preserves the order of MSQE(x), i.e.:

MSQE(x1) ≤ MSQE(x2) ⇔ ϕ(x1) ≤ ϕ(x2),

∀ x1, x2 ∈ [rb, rt] or x1, x2 ∈ R \ [rb, rt].
2) Equivalence. There exists a, b ∈ R, and 0 < a < b, such that

aMSQE(x) ≤ ϕ(x) ≤ bMSQE(x), ∀x ∈ R. (7)

3) Smoothness. ϕ(x) ∈ C2(R).

where C2(R) denotes the twice differentiable function family for the domain of
all real numbers.

According to the definition, we could further infer that SQRs are periodic
within the domain of quantization segment [rb, rt]. In addition, SQRs could not
only preserve the same minima points with MSQE, but also acquire the close
asymptotic around the quantization grid points and at infinity. In other words,
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for arbitrary SQR ϕ and s > 0, there exists B > 0 such that the following
relation holds for MSQE(x; s) → 0:

s2ϕ
(x
s

)
= B ·MSQE(x; s) + o(MSQE(x)). (8)

These admirable characteristics guarantee that we could employ SQRs to replace
the conventional MSQE with negligible relaxation.

Following the notation of MSQE, we extend the SQR for tensor X with the
average of all the components’ ϕ(x) values. Then, Lagrange function minimiza-
tion of quantization network in the definition domain of parameters (W, sw, sa)
could be rewritten as follows:

LQ = E
[
L
(
F(W,X)

)]
+ λwLw + λaLa (9)

Lw(W; sw) =
1

N

N∑
i=1

s2wi
ϕ(Wi, swi), La(A; sa) =

1

N

N∑
i=1

E[s2ai
ϕ(Ai, sai)]. (10)

This objective function becomes smooth and amenable to optimize. Accord-
ing to the property defined in Eq. 7, it also effectively constrains the solution
of network in the compact domain which belongs to the solution domain with
MSQE regularizer. Indeed, if SQR ϕ(x) is less than c ∈ R in some domain x ∈ Ω,
therefore MSQE is less than ac for some a ∈ R. This means that while we min-
imize SQR to zero then MSQE also converges to zero. More details and proofs
could be seen in Appendix A.

4.2 QSin Regularizer

According to the definition of SQR, we proposed a novel smooth regularizer,
QSin, to improve the performance of quantization network. The definition of
QSin is showed in Eq. 11. QSin is a sinusoidal periodic function within the
domain of quantization segment [rb, rt], while it is a quadratic function beyond
the quantization segment domain.

QSin(V; s) =
s2

K

∑
xj∈V

QSinon

(xj

s

)
, (11)

where the QSinon is defined as follows:

QSinon(x) =


sin2(πx), if rb ≤ x ≤ rt,

π2(x− rb)
2, if x < rb,

π2(x− rt)
2, if x > rt.

(12)

QSin is a twice differentiable function for the whole domain of definition. Its
function curve and gradient curve with s = 1 for scalar input are illustrated



8 K. Solodskikh, V. Chikin, R. Aydarkhanov et al.

in Fig. 1. QSin is smooth everywhere since there is no quantization operator,
which is quite different from MSQE. As for quantization network optimization,
the scale factor s usually needs to be optimized. Hence, we also compared the best
solution of s for QSin and MSQE regularizer. As for the uniform quantization
of random variable ξ, we randomly sampled M (e.g.128) values from standard
normal distribution, and then computed the quantization error MSQE(ξ; s) and
QSin(ξ; s) for each scale value. The best solution of s from QSin is quite close
to that from MSQE for various distributions of ξ. More details could be seen
in Appendix B. Therefore, we can employ smooth QSin to replace the MSQE
regularizer while preserving sufficient constraint for quantization error.

4.3 Quantization Network Optimization

Considering network quantization problem as an optimization problem with spe-
cial constraints, we substitute Eq. 11 into Eq. 9 and acquire the final objective
function. This method employs the full precision network F(W,X) without
quantization operations on the forward pass during training stage, called Round
Free (RF). Then, SGD technique could be utilized to optimize this objective
function LQ of network directly. Inspired by LSQ [9] method, we set the scale
factor of weights and activations as a learnable parameter to improve the perfor-
mance of quantization network. sa and wa will be updated during each step of
gradient descent to minimize the SQR. More details could be seen in Appendix
B. During the validation or test stage, the quantized network will be computed
according to Eq. 3 with quantization operations and integer arithmetics.

Although our novel regularizer could constraint the activation effectively,
there still exists differences between constrained activations and quantized ac-
tivations to some degree, especially for low-bit quantization. Hence, as for the
extreme low-bit quantization, an optional way is to add the quantization oper-
ation Eq. 2 to the activations to alleviate the quantization error accumulation
problem. The activations before getting through the quantization operation are
utilized to calculate the QSin regularizer. In this scheme, STE [1] should be
employed to propagate the gradients through round function QU .

As for the coefficient of regularizer λw and λa, we set them as a power of
10 to normalize the regularizer loss La and Lw for acquiring the same order
with the main loss. Weight quantization is achieved with a progressive way. The
weight regularizer coefficient λw is adjusted with multiplying by 10 gradually
during the training stage. The value of λa usually does not change for stable
training. The whole quantized network training procedure is summarized in the
Algorithm 1.

4.4 Discussion

In addition to MSQE, SinReQ [8] explored sinusoidal functions as regularizer
for weight quantization. Unfortunately, its variation trend outside of quantiza-
tion segment is quite different from the actual quantization error (see Fig. 2 and
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Algorithm 1 Quantization with smooth regularizers

Require: W, sw, sa – learnable parameters (weights and scale factors).
λw, λa – regularization coefficients.
lr, Ntrain, Ninit – learning rate, epoch size, initialization batches number.

1: Initialize sa by sample statistics evaluating F on Ninit batches from X.
2: for Ntrain times do
3: Sample random batch from train dataset.
4: Evaluate quantization Lagrange function LQ.
5: Calculate the gradients of learnable parameters: Gw = ∂L

∂W + λw
∂Lw

∂W ,

Gsw = λw
∂Lw

∂sw
,

6: If RF: Gsa = λa
∂La

∂sa
,

7: If STE: Gsa = ∂(L+λaLa)
∂sa

,
8: Update learnable parameters using calculated gradients and learning rate

lr.
9: end for

10: Validate quantized model Fq.
Return: W, sw, sa

Fig. 1(a)), which results in high clamping error and significant accuracy degrada-
tion. Our QSin regularizer represents the equivalent of the actual quantization
error effectively. QSin introduces penalty for clamping values which allows to
train the quantization scale and improve the accuracy of quantization network.
Besides, QSin also adds multiplier π2 and preserves the twice differentiable prop-
erty successfully. At last, the original SinReQ is only utilized on weight quan-
tization for model compression. Our QSin method is employed on both weights
and activations to acquire a fully quantized network. Hence, the proposed QSin
method is quite different from the other quantization regularizers.

5 Experiment

Extensive experiments are conducted to demonstrate the effectiveness of the
proposed QSin method, including classification task and Super-Resolution task.

5.1 Implementation Details

Database As for classification task, we employed two popular datasets: CIFAR-
10 and ImageNet (ILSVRC12) [6]. The CIFAR-10 database contains 50K train-
ing images and 10K test images with the size of 32 × 32, which belong to 10
classes. ImageNet database consists of about 1.2 million training images and
50K test images belonging to 1000 classes. For Super-Resolution task, we em-
ploy DIV2K [29] database to train the standard SR network. DIV2K database
consists of 800 training images and 100 validation images. The low-resolution
images are generated with bicubic degradation operator. During the test stage,
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Fig. 2: Comparison of QSin and SinReQ [8] regularizer.

Set5, Set14 and Urban100 [15] database are utilized to evaluate the performance
of quantized SR network.

Settings In following experiments, the weights and activations of all layers except
for the first and last layers are quantized into low-precision integer. We employed
Round Free mode for 8-bit quantization and STE mode on activations for 4-
bit quantization during the training stage. The quantized network is trained
by SGD optimizer with learning rate lr = 0.001 and momentum m = 0.9.
The coefficient of activation regularizer λa is setted as a constant value 1. The
coefficient of weight regularizer λw is initialized as 1 and adjusted each 30 epochs
by multiplication on 10. Conventional data augmentation strategies [19,21] are
also utilized in these experiments. More details about training configurations
could be seen in Appendix D.

5.2 Comparison with State-of-the-arts

To compare with other SOTA quantization algorithm, we select four mainstream
approaches: MSQE regularization [4], SinReQ [8] regularization, QAT in Ten-
sorflow [18], LSQ [9] and DSQ [12]. By comparing with MSQE and SinReQ
methods, we show that QSin achieves better performance since it is smooth and
reflects the actual quantization error effectively. The benefits of QSin could be
demonstrated by comparing with all these SOTA quantization approaches.

Image classification To facilitate comparison, we select conventional classifi-
cation models including ResNet18 [13] and MibleNet-V2 [26]. We trained the
quantized networks with the QSin regularizer on ImageNet database for 4-bit
and 8-bit. The experimental results summarized in Table 1 show that QSin
method achieves higher top-1 accuracy than other prominent quantization ap-
proaches for 4-bit and 8-bit with the architectures considered here. For 8-bit,
the quantization networks even achieves slightly better performance than its
full-precision model in some cases. Compact neural networks are usually hard to
quantize while preserving the accuracy of full-precision model. It is interesting to
note that the quantized 8-bit MobileNet-V2 network could achieve close results
with full-precision model through QSin approaches. Moreover, QSin results were
obtained without weights round during training what lead to higher accuracy
on MobileNet-V2 comparing with STE approaches like LSQ.
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Table 1: Quantitative results in comparison with state-of-the-art quantization
methods on the ImageNet database. The best results are highlighted in bold.

Network Method
Top-1 Accuracy (%)

4-bit 8-bit

ResNet-18 [13]

Full-precision 69.8 (fp32)

QAT TF [18] 68.9 69.7

PACT [30] 69.2 69.8

DSQ [12] 69.4 69.8

LSQ [9] 69.8 69.8

SinReQ [8] 64.63 69.7

MSQE [4] 67.3 68.1

QSin 69.7 70.0

MobileNet-V2 [26]

Full-precision 71.8 (fp32)

PACT [30] 61.4 71.5

DSQ [12] 64.8 71.6

LSQ [9] 68.1 71.6

SinReQ [8] 61.1 71.2

MSQE [4] 67.4 71.2

QSin 68.7 71.9

Image Super-Resolution To evaluate the performance of QSin method on low-
level vision tasks, we consider the single image super-resolution (SISR) as a
conventional task. EDSR [21] and ESPCN [27] are selected typical SR networks
to facilitate the comparison. We trained these quantization networks with L1 loss
and QSin regularizer on DIV2K database and summarized the 8-bit quantization
results in Table 2. It shows that the proposed QSin method achieves better
performance than other quantization approaches, especially for MSQE. Besides,
we also illustrate the visual quality of output images from quantized networks
in Fig. 3. It is obvious that our QSin method could preserve the texture details
of the full-precision model effectively since the smooth property of regularizer.
In addition, we also provided comparison with PAMS quantization method [20]
which is specially designed for SR network. It could be seen that, without any
specific setups and initialization for SISR task, QSin could achieve the same or
even slightly better performance as PAMS. More image examples could be seen
in Appendix E.

5.3 Ablation Study

Effect of the coefficient of regularizer The coefficients of regularizer λw and λa

take an important role in the performance of quantized networks. Here we con-
ducted ablation experiments on the CIFAR-10 database to explore the affect of
coefficients of regularizer. A series of combinations of λw and λa were utilized
to train the ResNet-20 quantization network. The experimental results summa-
rized in Table 3 reveal that the coefficients has a significant influence on the final
performance. Influence of λa is not so significant as λw but still obvious. The
best results from our empirical evaluation shows that multistep scheduling of λw
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Table 2: Quantitative results of SR task in comparison with state-of-the-art
quantization methods on benchmark databases. The best 8-bit quantization re-
sults are highlighted in bold.

Network Method
PSNR (dB)

Set5 Set14 Urban100

4x EDSR [21]

Full-precision 32.2 28.5 26

QAT TF [18] 31.9 28.4 25.7

PACT [30] 31.5 28.2 25.25

LSQ [20] 32.1 28.5 25.9

PAMS [20] 32.1 28.6 26

SinReQ [8] 32.1 28.3 25.3

MSQE [4] 32.1 28.5 25.9

QSin 32.2 28.5 26

3x ESPCN [27]

Full-precision 32.5 29 26.1

QAT TF [18] 32.35 28.8 25.9

LSQ [9] 32.4 28.9 26

SinReQ [8] 32.2 28.9 26

MSQE [4] 32.45 28.95 26

QSin 32.5 29 26.1

allows significantly improve quality. The intuition behind are follows: less values
of λw helps to task loss makes more contribution, during training we increase
λw to slightly decrease quantization error.

Table 3: Experimental results with various coefficients of regularizer on the
CIFAR-10 database. Last line shows multistep scheduling on λw.

λw for weights λa for activations
Accuracy (%)

4-bit 8-bit

0 0 88.9 91.6

0 1 89.2 91.6

0 10 89.2 91.6

1 0 90.0 91.6

1 1 90.2 91.7

10 1 90.6 91.7

100 1 91.1 91.8

(1, 10, 100) 1 91.7 91.9

Quantization error and convergence analysis To analyze the effect of Qsin in
terms of reducing the quantization error, we explored the variation of the mean
square quantization error of activations and weights along with the increasing of
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Fig. 3: Visual Comparison of 3x ESPCN with state-of-the-art methods in terms
visual quality. δ is the residual map of the corresponding image of quantized
network and full-precision network.

Fig. 4: Histograms of the weights distribution from the third convolution layer
of ESPCNN model for SR task. The dynamic evolution of weights distribution
from QSin and LSQ approaches are compared here.

Fig. 5: Quantization error comparison of QSin and MSQE for ResNet-20 on
CIFAR-10 in 4-bit quantization.
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training iterations. Fig. 5 illustrates the results of 4-bit quantization on ResNet-
20 with QSin and MSQE regularizers. It is obvious that QSin leads to much lower
quantization error compared with MSQE regularizer since its smooth property.
It reveals that QSin not only achieved higher accuracy than MSQE but also ac-
quired more stable convergence. This phenomenon should thanks to the smooth
property of QSin regularizer which is more helpful to optimization.

Weight analysis To analyze the weight quantization, we provide the histograms
of weights distribution from the model which was trained with QSin regularizer
in Fig. WeightDistribution. Multiple histograms from various epochs are illus-
trated together to explore the dynamic evolution of weights distribution. We
have compared weights distributions of networks trained through QSin, MSQE
and LSQ method [9]. LSQ employs trainable scale factor with straight through
estimator to propagate through the round function. From Fig. 4, we can see that
the weights distribution of QSin method becomes more and more similar to the
categorical distribution along with rising of training epochs. In addition, the his-
tograms of weights distribution from the network trained by QSin are closer to
categorical distribution than weights histogram obtained from the LSQ method.
During the evaluation and test stage, the quantized network would generate less
quantization error on weights for QSin method. This is one reason why QSin
method could achieve better performance than LSQ in Table 1 and Table 3.
More distributions could be find in Appendix C.

6 Conclusion

This paper defined a family of equivalent smooth quantization regularizer to
alleviate the accuracy degradation problem in network quantization. Then, we
proposed a novel QSin regularizer belonging to SQR which represents the equiva-
lent of actual quantization error and allows to obtain better gradient behavior in
the neighborhood of transition points. In addition, we built up the correspond-
ing algorithm to train the quantization network. The extensive experimental
results show that the proposed SQR method could achieve much better perfor-
mance than other prominent quantization approaches on image classification and
super-resolution task. What’s more, in terms of visual quality, SQR approach
would not generate the grid artifact compared with other quantization methods
due to its smooth property. The ablation study reveals that SQR could reduce
the quantization error significantly and acquire stable convergence. Furthermore,
distributions of the learned weights from SQR regularizer are more close to cat-
egorical distribution, which is helpful to booting the performance of quantized
network.
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