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Abstract. Federated learning (FL) enables clients to collaboratively
train a model, while keeping their local training data decentralized.
However, high communication costs, data heterogeneity across clients,
and lack of personalization techniques hinder the development of FL.
In this paper, we propose FedLTN, a novel approach motivated by the
well-known Lottery Ticket Hypothesis to learn sparse and personalized
lottery ticket networks (LTNs) for communication-efficient and person-
alized FL under non-identically and independently distributed (non-IID)
data settings. Preserving batch-norm statistics of local clients, postprun-
ing without rewinding, and aggregation of LTNs using server momentum
ensures that our approach significantly outperforms existing state-of-the-
art solutions. Experiments on CIFAR-10 and Tiny ImageNet datasets
show the efficacy of our approach in learning personalized models while
significantly reducing communication costs.

Keywords: Federated Learning, Lottery Ticket Hypothesis, Statistical
Heterogeneity, Personalization, Sparse Networks

1 Introduction

Federated Learning (FL) allows decentralized clients to collaboratively learn
without sharing private data. Clients exchange model parameters with a central
server to train high-quality and robust models while keeping local data private.
However, FL faces a myriad of performance and training-related challenges:

1. Personalization: Vanilla FL constructs a server model for all clients by av-
eraging their local models, while postulating that all clients share a single
common task. However, this scheme does not adapt the model to each client.
For example, platforms like Youtube and Netflix require a unique personal-
ized model for each of their clients. Most FL algorithms focus on improving
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the average performance across clients, aiming to achieve high accuracy for
the global server model. The global model may perform well for some clients
but perform extremely poorly for others. This is not the ideal scenario for a
fair and optimal FL algorithm. When deployed on edge devices in the real
world, local test accuracy is instead a more important metric for success.

2. Statistical heterogeneity/Non-identically independently distributed (non-IID)
data: When different clients have different data distributions, the perfor-
mance of FL degrades and results in slower model convergence.

3. Communication Cost : Sending and receiving model parameters is a huge
bottleneck in FL protocols as it could be expensive for resource-constrained
clients. It is important to reduce the total number of communication rounds
and the size of the packets that are transmitted during every round. Unfor-
tunately, there is usually a tradeoff between model accuracy and communi-
cation cost accrued during the federation process. For instance, techniques
that speed up accuracy convergence or decrease the model size may result
in a small decrease in accuracy.

4. Partial Participation: Real-world FL scenarios involve hundreds of clients.
Hence, it is important for an FL algorithm to be robust even with low par-
ticipation rates and if clients drop out and rejoin during the FL process.

While there have been numerous papers that address each of these challenges
individually (See Section 2 for related work), finding one approach that provides
solutions for all of them has proven to be difficult. LotteryFL [18] provided
the first attempt at addressing the above-mentioned issues in one protocol. It
is motivated by the Lottery Ticket hypothesis (LTH), which states that there
exist subnetworks in an initialized model that provides the same performance
as an unpruned model. Finding these high-performing subnetworks are referred
to as finding winning lottery tickets. LotteryFL obtains personalized models
by averaging the lottery tickets at every federated round. This also improves
the communication costs as only the lottery tickets are communicated across
the client and server instead of the whole model. However, LotteryFL fails to
achieve the same performance in terms of pruning as obtained in Lottery Ticket
Hypothesis (LTH). LotteryFL models are pruned only up to 50% compared
to 90% or more in the non-federated LTH setting. This is due to the fact that
pruning in LotteryFL takes a lot of time – the authors claim that it takes around
2000 federated rounds to prune around 50% of the model.

The slow pruning process of LotteryFL presents major drawbacks. In many
experimental settings, local clients have difficulty reaching the accuracy thresh-
old to prune for most rounds. On more difficult tasks, some clients may never
reach the accuracy threshold. Consequently, they fail to find winning lottery tick-
ets and do not reach personalized and more cost-efficient models. To avoid this
in the LotteryFL approach, the accuracy threshold must be lowered, inhibiting
the efficacy of finding the right lottery ticket networks for each client.

Moreover, LotteryFL uses evaluation measures such as average test accuracy
to compare their work with baselines. We argue that these measures can easily
misrepresent the performance of a federated training paradigm. In FL, it is
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also essential that each client achieves a fair performance, an aspect that is
not captured by the average test accuracy. We introduce an evaluation metric
based on the minimum client test accuracy to solve this problem. We find that
LotteryFL sometimes achieves a lower minimum client accuracy than FedAvg.

To address the above-mentioned challenges, we present FedLTN, a novel ap-
proach motivated by the Lottery Ticket Hypothesis to learn sparse and person-
alized Lottery Ticket Networks (LTNs) for communication-efficient and person-
alized FL under non-IID data settings. Our contributions are as follows:

– We propose postpruning without rewinding to achieve faster and greater
model sparsity. Although our pruning method is contrary to non-federated
pruning practices, we find that it can be leveraged in federated learning due
to the special properties of averaging across multiple devices that mitigate
overfitting.

– We introduce Jump-Start and aggregation of LTNs using server momentum
to significantly shorten the rounds needed to reach convergence. In particu-
lar, FedLTN with Jump-Start reduces communication costs by 4.7X and 6X
compared to LotteryFL and FedAvg respectively.

– We learn more personalized FL models by preserving batch normalization
layers. FedLTN achieves 6.8% and 9.8% higher local client test accuracy than
LotteryFL and FedAvg respectively on CIFAR-10 [15].

– We demonstrate the efficacy of our techniques on the CIFAR-10 and Tiny
ImageNet [17] datasets. Moreover, our optimizations are effective in both
high-client (100) and low-client (10) experimental setups.

2 Related Work

FedAvg is a simple and commonly used algorithm in federated learning proposed
in the seminal work of [21]. In FedAvg, the server sends a model to participating
clients. Each client trains using its local dataset and sends the updated model
to the server. The server aggregates via simple averaging of the received models
and the process continues for a fixed number of rounds or until convergence is
achieved. Most existing FL algorithms are derived from FedAvg where the goal
is to train a server model that tries to perform well on most FL clients. However,
FL still faces numerous challenges, among which convergence on heterogeneous
data, personalization, and communication cost are the most pressing problems.

2.1 Performance on heterogeneous (non-IID) data

FedAvg is successful when clients have independent and identically distributed
data. However, in many real-world settings, data is distributed in a non-IID
manner to edge clients and hence leads to client drift [11]. That is, gradients
computed by different clients are skewed and consequently local models move
away from globally optimal models. This substantially affects the performance
of FedAvg as simple averaging leads to conflicting updates that hinder learning,
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especially in scenarios where clients have a large number of local training steps
and a high degree of variance in their data distributions. Under such scenarios,
introducing adaptive learning rates [24] and momentum [9, 12, 23, 30, 31] to the
server aggregation process are beneficial as they incorporate knowledge from
prior iterations. Gradient masking [28] and weighted averaging [25,32] of models
have also been shown to be useful.

2.2 Personalization

Under the traditional FL setting, a ”one-fit-for-all” single server model is trained
and updated by all clients. However, this model may underperform for specific
clients if their local distribution differs drastically from the global distribution.
For example, if there is extreme non-IID data distribution skew amongst clients,
the server model trained through FL may only reach a mediocre performance for
each local test set. Another failure scenario occurs when there are uneven data
distributions amongst clients. In these cases, the federated server model may
learn to perform well only on a subset of data. Clients with data distributions
that are different from this subset would then have subpar performance. Con-
sequently, it is important to evaluate FL frameworks not only for their global
performance but also for their average and worst-case (minimum) local perfor-
mance.

A variety of papers have aimed to introduce personalized FL, where each
client can learn a model more properly finetuned based on their data distribution.
In [5], the authors apply the use of a model-agnostic meta-learning framework
in the federated setting. In this framework, clients first find an initial shared
model and then update it in a decentralized manner via gradient descent with
different loss functions specific to their data. Other papers have proposed similar
finetuning approaches based on the use of transfer learning [20,29].

Another category of personalization techniques relies on user clustering and
multi-task learning [14,26]. These techniques cluster together clients with similar
data distributions and train personalized models for each cluster. Then, they use
multi-task learning techniques to arrive at one model that may perform well for
all clients.

Lastly, preserving local batch normalization while averaging models has been
used to address the domain and feature shift non-IID problems [3,4,10,19]. Since
these batch normalization layers are unique to each client, they help personalize
each model to the underlying local data distribution.

However, [16] mentions drawbacks to these various personalization approaches
in the FL setting. Namely, most of these approaches incur increased communica-
tion costs, such as a greater number of federation rounds – both transfer learning
and user clustering techniques require clients to learn a shared base model first.
Furthermore, many personalization approaches result in greater model sizes,
such as the addition of batch normalization layers.

In our work, clients can learn personalized lottery ticket networks (LTNs)
similar to user clustering techniques without the overhead of communication
costs. We show in our paper that by preserving local batch norm properties
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while learning these LTNs, clients can improve their accuracy (i.e. achieve better
personalization) while compressing model sizes.

2.3 Communication Cost

Communication cost is a huge problem for FL as clients frequently communicate
with the server. There are three major components of cost during federation –
model size, gradient compression (limiting the data needed to be transmitted be-
tween each local edge device and the server), and an overall number of rounds of
the federation. Model compression techniques [1,2,8] like quantization, pruning,
and sparsification are usually taken from the classic single centralized setting
and applied to FL. In particular, sparse models not only lead to lower memory
footprints but also result in faster training times.

For gradient compression, [1, 13, 27] have proposed various update methods
to reduce uplink communication costs. These include structured updates, which
restrict the parameter space used to learn an update, and sketched updates,
which compress model updates through a combination of quantization, rotations,
subsampling, and other techniques.

2.4 Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis (LTH) [6] states that there exists a subnetwork
in a randomly initialized network, such that the subnetwork when trained in
isolation can equal the performance of the original network in atmost the same
number of iterations. The steps involved in LTH usually include the following:
First, the randomly initialized model is trained for a few iterations. Second, the
model is pruned based on the magnitude of its weights. Then, the unpruned
weights are reinitialized to the weights at the start of the training (rewinding to
round 0). This process continues iteratively until the target pruning is achieved.

Though LTH initially showed promising results only for small datasets and
network architectures, recent works have expanded LTH to more complex net-
works and datasets. [7] notably demonstrates better results by rewinding weights
to a previous iteration rather than that of the initial iteration (round 0).

3 FedLTN: Federated Learning for Sparse and
Personalized Lottery Ticket Networks

In this section, we present the motivation and reasoning behind various compo-
nents of our FedLTN framework that achieve higher degrees of personalization,
pruning, and communication efficiency in finding lottery ticket networks (LTNs).
These components focus on improving the averaged server LTN to inform bet-
ter localized performance in terms of accuracy and memory footprint. Along
with FedLTN, we propose Jump-Start, a technique for drastically reducing the
number of federated communication rounds needed to learn LTNs:
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Algorithm 1 (FedLTN): To learn complex image classification tasks with
greater non-IID feature skew, FedLTN utilizes batch-norm preserved LTN, post-
pruning, no rewinding, and accelerated global momentum. This combination
uses batch-norm preserved averaging to find a server LTN that helps individ-
ual clients learn without imposing on their personalized accuracy. Postpruning
without rewinding parameters significantly increases the rate of pruning and also
helps networks find more personalized LTNs. Finally, our accelerated aggregation
of LTNs helps speed up convergence.

Algorithm 2 (FedLTN with Jump-Start): Jump-Start can be utilized to skip
communication costs of the first few rounds of training by replacing them with
local training, without causing a loss in local test accuracy. This technique is
especially useful for scenarios where there are resource constraints on local client
devices. One client can be first trained and pruned, then all other clients transfer-
learn off this smaller model.

3.1 Personalization:

Batch normalization-preserved LTN: In order to personalize LTNs, we in-
troduce a batch normalization-preserved protocol. During the federated aggrega-
tion process, batch normalization (BN) layers are not averaged while computing
the server model nor uploaded/downloaded by local clients. Since BN layers have
been commonly used for domain shift adaptation in single client settings, these
layers help personalize each client to its individual data distribution. Preserving
BN layers during aggregation leads to higher personalized accuracy by avoiding
conflicting updates to clients’ individualized BN. It also decreases communica-
tion costs as batch normalization layers are not transmitted to the server.

3.2 Smaller memory footprint / Faster pruning

Postpruning: As reported in Section 1, one problem with the LotteryFL’s naive
approach in applying LTH to FL is that the server model sent back to clients
each round suffers drastic losses in accuracy before any local training. Moreover,
each client decides to prune the model immediately after receiving it from the
server, prior to any local training. If the server model reaches a certain threshold
for the client’s local test accuracy, they prune rp% of the parameters that have
the least L1-norm magnitude. For clients with relatively low levels of pruning,
this means that most of the parameters pruned will be the same amongst all
the clients that decide to prune that federated round. This approach hopes that
only clients with the same archetype (who have the same data distribution)
will prune on the same round. However, due to the above-stated challenges in
slow prune rates, LotteryFL sets the accuracy threshold to be 50% for clients
trained on a binary classification problem. Consequently, models merely need to
be slightly better than random chance – which means that clients of different
archetypes pruning on the same round (on mostly the same parameters) are a
common occurrence. This process hinders the degree of personalization achieved
via LotteryFL.
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Algorithm 1 FedLTN

function ServerExecute(θ0):
θg ← θ0 ▷ random init model unless Algorithm 2 is used
k ← max(N ·K, 1) ▷ N available clients, participation rate K
St ← {C1, . . . , Ck} ▷ k randomly sampled clients
for each k = 1, 2, . . . , N do

θtk ← θg ▷ each client starts with same init model
end for
for each round t = 1, 2, . . . , T do

for each client k ∈ St in parallel do
θtk = θtg ⊙mt

k ▷ mk is the mask of client k and indicates its LTN
θt+1
k ,mt+1

k ← ClientUpdate(Ck, θ
t
k, θ0)

end for
// BN-preserved aggregation: simple average of non-BN layers of LTNs
θt+1
g ← aggregate(θt+1

k , ignore batchnorm=True)
// Aggregation of LTNs using server momentum
θt+1
g ← τθt+1

g + (1− τ)(θtg − λ∆t) ▷ τ is a hyperparameter
∆t+1 ← −(θt+1

g − θtg)
end for

end function
function ClientUpdate(Ck, θ

t
k, θ0):

// BN-preserved LTN
Ct

k, θ
t
k ← copy ignore batchnorm(Ck, θ

t
k, C

t−1
k , θt−1

k )
▷ Retain previous round’s batch normalization layers

B ← split (local data Dtrain
k into batches)

// Regularization when using server momentum
θinit ← θtk
for each local epoch i from 1 to E do

for batch b ∈ B do
θt+1
k ← θtk − η∇θt

k
ℓ(θtk; b) + ∥θinit − θtk∥ ▷ η is learning rate, ℓ(·) loss

function
end for

end for
// Postpruning without rewinding
acc← eval(θtk, local val set D

val
k )

// rtarget is the target pruning rate, rtk is the current pruning rate for client k at
round t

if acc > accthreshold and rtk < rtarget then
mt+1

k ← prune(θtk, pruning step rp) ▷ new mask for LTN
θt+1
k ← θt+1

k ⊙mt+1
k ▷ do not rewind parameters

B ← split (local data Dtrain
k into batches) ▷ train again after pruning

for each local epoch i from 1 to E do
for batch b ∈ B do

θt+1
k ← θtk − η∇θt

k
ℓ(θtk; b) ▷ η is learning rate, ℓ(·) loss function

end for
end for

end if
return θt+1

k ,mt+1
k

end function
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Here, we present an alternative pruning protocol. Instead of pruning before
any local training, we prune the client model based on the magnitude of the
weights after n local epochs of training. This speeds up the pruning process
since it is much more likely for the validation accuracy threshold to be reached.
Furthermore, postpruning actively encourages diversity in pruned parameters, as
each client’s parameters will be different after they locally train. Since a freshly
pruned model needs to be retrained, we stipulate that if a client prunes it retrains
for another n epochs.

Rewinding: Conventionally, pruned models rewind weights and learning rate to
a previous round T . LotteryFL rewinds to T = 0 (global initial model). Although
in the Lottery Ticket Hypothesis rewinding is needed to avoid convergence to a
local minima in the loss function, we hypothesize that this isn’t needed during
federation, since averaging across multiple models helps mitigate overfitting.
That is, instead of resetting all parameters back to the global init model after
pruning, the non-pruned weights stay the same.

Aggregation of LTNs using server momentum: One of our main contribu-
tions is to fasten the convergence of each client model. This is crucial to obtain
a performance greater than the threshold so that the client model can prune at
a faster rate. This, in turn, reduces the number of communication rounds and
hence the overall communication cost, as fewer parameters have to be sent each
round. In our problem setting, our server ‘model’ is an aggregate of all the clients’
winning ticket networks. To improve the convergence speed, the server sends an
anticipatory update of the ticket networks. We outline the steps Algorithm 1
follows to achieve faster convergence.

– At each round, the server sends an accelerated update (θt) to each of the
clients. This means that the clients receive an accelerated winning lottery
ticket update at every round. This initialization helps each client to train
faster. More formally, we have in the server, for round t

θt+1
g = τ

∑
k

LTNs(θtk) + (1− τ)(θtg − λ∆t)

∆t+1 = θt+1
g − θtg

where τ is a hyperparameter.
– The server sends the corresponding parameters to each of the clients based

on the client mask. We have for client k at iteration 0:

θt+1
k0 = mk.θ

t+1
g

– The initial weights of the client are used in the regularization term while
training the client to align the local gradients with the accelerated global
updates. β is a hyperparameter that weights the regularization term. For
client k at iteration i, we have

L(θt+1
ki ) = l(θt+1

ki ) + β∥θt+1
ki − θt+1

k0 ∥
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FedLTN with Jump-Start Communication cost is an important factor while
implementing FL in the real world. Furthermore, clients with resource-constrained
devices may only be able to locally store and train a model after achieving a
certain degree of sparsification. We present FedLTN with Jump-Start in Algo-
rithm 2 as an extension of FedLTN to address these challenges.

Before federated training, k clients (usually, k = N all clients) locally train for
Tjump rounds without communicating with the server nor with each other. Dur-
ing local training, they prune to a small degree (e.g. 30%). Then, we choose the
model with the highest validation accuracy from the local training Jump-Start
and send it to all clients as a model for transfer learning. Then, FedLTN begins
with much fewer communication rounds required. Jump-Start is motivated by
the work of [22], which found that an LTN trained on one image classification
dataset can be finetuned to other datasets without much loss in accuracy.

Algorithm 2 FedLTN with Jump-Start

function JumpStart(Tjump):
θg ← θ0 ▷ init random global model
k ← max(N ·K, 1) ▷ N available clients, participation rate K
St ← {C1, . . . , Ck} ▷ k randomly sampled clients
for each round t = 1, 2, . . . , Tjump do

θtk = θt−1
k ⊙mt

k ▷ mk is the mask of client k and indicates its LTN
θt+1
k ,mt+1

k ← ClientUpdate(Ck, θ
t
k, θ0) ▷ local update only

end for
θg ← argmaxθt

k

Σneval(θtk,D
val
n )

N
▷ choose client with highest val acc

ServerExecute(θg) ▷ pass θg to FedLTN for clients to transfer learn
end function

4 Experiments

We evaluate the performance of FedLTN against different baselines in several
different types of experiments, where we vary the task (image classification),
environment setting (large vs. small number of clients), heterogeneity settings
(non-IID distributions), and client participation rates.

4.1 Experiment Setup

Datasets We use the CIFAR-10 [15] and Tiny ImageNet datasets for our ex-
periments. To simulate the non-IID scenario, each client consists of 2 classes
and 25 datapoints per class for training, 25 datapoints for validation, and 200
datapoints as the test set. For Tiny ImageNet, we randomly sample 10 classes
from the 200 classes as our dataset. To simulate a more challenging scenario,
we also consider the Dirichlet non-IID data skew. Each client consists of all 10
classes, with the proportions of data volume per class based on the Dirichlet
distribution.
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Compared Methods

1. FedAvg: This baseline indicates the performance of an unpruned federated
model in our settings. FedAvg computes the federated model by averaging
the weights (including BN layers) of all the participating clients’ models at
every round.

2. FedBN: FedBN proposes an improvement over FedAvg to obtain better
personalization for clients. The server model in FedBN does not aggregate
the batch-norm parameters of the participating clients. We use this as a
baseline to compare our personalization performance.

3. LotteryFL: LotteryFL presented the first attempt at using the Lottery
Ticket Hypothesis to achieve personalized submodels for each client. We use
this as a baseline to analyze the performance of a pruned federated model.

Model architecture We utilize ResNet18 as the standard architecture for our
experiments. Since LotteryFL does not account for batch normalization (BN)
layers, we also conduct experiments on a custom CNN model without BN layers
on CIFAR-10 for a baseline comparison. Results for the high-client setting are
shown below. Custom CNN results for the low-client setting and other imple-
mentation details can be found in our supplementary material (Appendix C).

Hyperparameters We set the hyperparameters local epochs (E) = 3, batch
size (B) =8, τ = 0.5, accuracy threshold (accthreshold) = 0.6, prune step( rp) =
0.1 and β = 0.01 for FedLTN. For LotteryFL, we use the same hyperparameters
the authors mentioned in [18]. We fix the number of communication rounds
to 50 for the low-client (10) setting and 2000 rounds for the high-client (100)
setting. We denote the models with the target pruning rate within paranthesis.
For example, FedLTN(0.9) refers to FedLTN paradigm with 90% as the target
pruning percent. For experiments using FedLTN with Jump-Start, we use 25
Jump-Start and 25 FedLTN rounds with K = 50% participation and 10% rp
prune step. We set a max prune of 30% for Jump-Start and 90% for FedLTN.

Evaluation Metrics To evaluate the personalization achieved by our models,
we compute the average classification accuracy achieved by each client model
on its corresponding test set. Although average test accuracy indicates overall
test performance across all clients, it is also important to measure the minimum
client test accuracy. This is to ensure that all clients participating in the federated
training paradigm learn a personalized LTN that performs well on their local
data distribution. Hence, we also use the minimum client test accuracy as an
evaluative measure. To compute communication costs, we sum the data volume
communicated at every round during the training process.

4.2 Evaluation

We demonstrate the success of FedLTN in learning personalized, sparse models
in this section. We analyze the test accuracy performance, maximum pruning
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achieved, communication costs, and the convergence speed of FedLTN with base-
lines. We report the results of all the baselines and our method in Table 1.

Dataset Algorithm
Avg Test Min Test Comm.
Acc (%) Acc (%) Cost (MB)

FedAvg 72.8 64.9 11,150.0

CIFAR-10

FedBN 78.72 65.75 11,137.5
LotteryFL(0.1) 72.0 56.3 10,613.95
LotteryFL(0.5) 75.8 52.5 8,675.7
FedLTN(0.1) 74.5 59.8 10,134.6
FedLTN(0.5) 81.1 61.5 6,563.3
FedLTN(0.9) 82.6 63.0 3,753.9

FedLTN(0.9; jumpstart) 82.2 64.8 1,846.0
FedLTN(0.9; rewind) 71.5 53.0 4,940.7

FedAvg 68.9 51.8 11,150.0
FedBN 73.0 55.5 11,137.5

Tiny ImageNet

LotteryFL(0.1) 72.6 41.3 10,370.7
LotteryFL(0.5) 71.3 50.8 6,885.5
FedLTN(0.1) 68.4 38.3 10,169.0
FedLTN(0.5) 73.3 50.0 6,885.5
FedLTN(0.9) 74.5 59.8 4,650.9

FedLTN(0.9; jumpstart) 83.1 61.8 1,778.4
FedLTN(0.9; rewind) 71.8 53.8 5,144.0

Table 1: Comparison of performance of FedLTN with all the baselines on the
CIFAR-10 and Tiny ImageNet datasets in the low-client setting with ResNet18.
FedLTN(0.9; jumpstart) refers to 90% target pruning with 25 rounds of Jump-
Start and 25 rounds of FedLTN. Rewinding resets model parameters to randomly
initialized model in round 0. Bolded numbers represent best performance and
underlined numbers represent the second best.

Personalization: We analyze the level of personalization achieved by each
client participating in FL. We consider the average test accuracy across all
clients, i.e the average performance for each client model on the test datasets.
We find that our method achieves better accuracy than an unpruned FedAvg
baseline and 50% pruned LotteryFL baseline models. For example, in CIFAR-
10, FedLTN(0.9) achieves average test accuracy of 82.6% when compared to
LotteryFL(0.5), which achieves 75.8%, and FedBN which achieves 78.72%. For
both CIFAR-10 and Tiny ImageNet, FedLTN(0.9) with and without Jump-Start
performs better than all the baselines, even when pruning 40% more parameters.

We find that our method achieves the highest minimum test accuracy com-
pared with all the other baselines. In Tiny ImageNet, FedLTN(0.9) with 25
Jump-Start rounds achieves 59.8% minimum test accuracy compared to 50.8%
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in the same setting using LotteryFL(0.5). We observe that while increasing the
target pruning rate of the experiment, the overall test accuracy increases. Our
highest pruned models give the best overall test accuracy. This is due to clients
learning more personalized models as the pruning rate increases, which leads to
better test performance.

Pruning: In our experiments, we evaluate FedLTN’s performance while using
different target pruning rates ranging from 10 to 90%. As shown in Table 1,
we can see that our method improves average test accuracy despite pruning
40% more parameters compared to baseline LotteryFL. Our pruning achieves
substantial reductions in memory footprint. When models are pruned to 90%
sparsity, the parameters take up a mere 0.031 MB for our custom CNN architec-
ture and 4.46 MB for ResNet18. This degree of sparsity is important as it makes
it feasible to train on even resource-constrained edge devices. We also compare
the rate of pruning between our method and the baselines. As seen in figure 1,
we observe that our method prunes around 70% in the first 20 rounds, while
LotteryFL(0.9) prunes around 10%. Our postpruning method can achieve larger
pruning rates quickly in a few rounds, even though we set a higher accuracy
threshold than LotteryFL.

Convergence: One of our objectives is to achieve faster convergence to facilitate
faster pruning. Figure 1 shows the performance obtained by the clients on their
validation set in each training round. Our method converges faster than FedAvg
and LotteryFL. This is due to the server broadcasting accelerated aggregated
LTNs during each round. This anticipatory update and the client initialization,
along with the modified regularization term align the client gradients to avoid
any local minima. This boosts the convergence speed of our method compared
to the baselines.

(a) (b)

Fig. 1: Left (a): Comparison of validation accuracies at each round. We observe
that our method converges faster than other baselines. Right (b): Comparison of
pruning rate at each round. our method prunes around 70% in 20 rounds while
baseline LotteryFL prunes around 10%.
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Communication Costs: Since our method prunes more than LotteryFL, the
communication costs are 2.3x and 3x times lower than that of LotteryFL and
FedAvg. As our method prunes faster than LotteryFL, we send lower parameters
during each communication round, reducing the overall communication cost. We
observe that the communication costs reduce even more when using jumpstart.
For example, with jumpstart, we obtain 4.7x and 6x lower communication costs
than LotteryFL(0.5) and FedAvg.

Impact of number of clients on performance: We run experiments to com-
pare the performance of FedLTN in a high-client setting (100 clients) with low
client participation of 5%. Table 2 shows the performance of FedLTN compared
with other baselines. We observe that FedLTN achieves the best average and
minimum local test accuracy. FedAvg performs the worst among all baselines.
We also note that FedLTN(0.9) achieves better performance than LotteryFL(0.5)
even if FedLTN is pruning 40% more parameters than the latter.

Setup Algorithm
Avg Test Min Test Comm.
Acc (%) Acc (%) Cost (MB)

CIFAR-10
FedAvg 50.6 42.0 2398.3

Custom CNN
LotteryFL(0.1) 75.1 47.5 2173.1

No BN Layers
LotteryFL(0.5) 74.9 51.3 1304.4

100 clients
FedLTN (0.1) 77.9 50.5 2166.1
FedLTN(0.5) 76.3 54.3 1254.7
FedLTN(0.9) 75.4 50.5 472.5

Table 2: Performance of FedLTN and other baselines on CIFAR-10 in the high-
client setting with 100 clients over 2000 rounds.

Impact of number of classes on performance: We run experiments with
each client consisting of all 10 classes in CIFAR-10. The data volume of these
classes is given by the Dirichlet distribution. The Dirichlet distribution is con-
trolled by the parameter α. For low α (close to 0) the data volume is heavily
skewed towards one particular class, while as α increases (close to 1), the data
volume is distributed in an iid manner across all classes. Since our goal is to learn
more personalized models, higher values of α pose a challenge. Table 3 shows the
performance of FedLTN(0.9) and FedLTN(0.5) compared with LotteryFL(0.5)
for α values of 0.5 and 0.7. As we can see, FedLTN(0.9) learns better-personalized
models for high values of α. For example, FedLTN(0.5) achieves 6% more test ac-
curacy than LotteryFL(0.5). We also observe that FedLTN(0.9) despite pruning
more parameters, can achieve better overall performance than LotteryFL(0.5).
This means that our method is capable of learning more personalized models for
high values of α when we have more number of classes.
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Algorithm
α = 0.5 α = 0.7

Avg Test Min Avg Test Min

LotteryFL(0.5) 61.19 24.00 54.00 36.00
FedLTN(0.5) 67.20 40.00 56.00 40.00
FedLTN(0.9) 64.80 40.00 55.60 36.00

Table 3: Performance on the CIFAR-10 dataset with dirichlet α = {0.5, 0.7}

Impact of rewinding on performance: Table 1 shows that rewinding to
round 0 after pruning leads to significant drops in FedLTN’s accuracy to simi-
lar levels as LotteryFL. Moreover, rewinding leads to slower pruning and thus
convergence, as seen in our supplementary material (Appendix B).

Impact of Architecture on Performance: When training on the custom
CNN, our BN-preserved LTN aggregation cannot be applied and leads to lower
performance on sparser models in Table 2. Comparing the results from Table 1
and the equivalent CIFAR-10 low-client experiment in the supplementary mate-
rial(Appendix C), BN-preserved LTN provides a major boost in our test accuracy
(especially for sparser models). Despite this, we see that FedLTN still performs
better than LotteryFL in Table 2. On the other hand, we find that LotteryFL
does not benefit from the BN layers and greater model depth of ResNet18, which
points to the efficacy of our BN-preserved LTN aggregation.

Impact of Jump-Start on Performance and Communication Cost: We
observe that using Jump-Start drastically reduces the communication cost with-
out any compromise on the performance. For example, we see from Table 1 and
the supplementary material (Appendix D) that FedLTN(0.9) achieves 74.5% on
Tiny ImageNet, while FedLTN(0.9; jumpstart) achieves 83.1% with up to 60%
lower communication costs. This is due to the efficacy of transfer learning from
the best-performing model after local training. Consequently, Jump-Start allows
clients to skip the communication cost of the initial FL rounds.

5 Conclusion

The Lottery Ticket Hypothesis has shown promising results in reducing the
model size without loss of accuracy for models trained on a single client. In this
work, we address the most pressing challenges of applying LTH to the FL setting
– slow model pruning and convergence. We propose a new framework, FedLTN,
for learning Lottery Ticket Networks via postpruning without rewinding, pre-
serving batch normalization layers, and aggregation using server momentum. We
extend FedLTN with Jump-Start, which uses local pre-training to reduce com-
munication costs. FedLTN and FedLTN with Jump-Start achieve higher local
test accuracies, significantly accelerate model pruning, and reduce communica-
tion cost by 4.7x compared to existing FL approaches.
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mar, S., McMahan, H.B.: Adaptive federated optimization. arXiv preprint
arXiv:2003.00295 (2020)

25. Reyes, J., Di Jorio, L., Low-Kam, C., Kersten-Oertel, M.: Precision-weighted fed-
erated learning. arXiv preprint arXiv:2107.09627 (2021)

26. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learn-
ing. Advances in neural information processing systems 30 (2017)

27. Suresh, A.T., Felix, X.Y., Kumar, S., McMahan, H.B.: Distributed mean estimation
with limited communication. In: International Conference on Machine Learning.
pp. 3329–3337. PMLR (2017)

28. Tenison, I., Sreeramadas, S.A., Mugunthan, V., Oyallon, E., Belilovsky, E., Rish, I.:
Gradient masked averaging for federated learning. arXiv preprint arXiv:2201.11986
(2022)

29. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Fed-
erated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252
(2019)

30. Xu, A., Huang, H.: Double momentum sgd for federated learning. arXiv preprint
arXiv:2102.03970 (2021)

31. Xu, J., Wang, S., Wang, L., Yao, A.C.C.: Fedcm: Federated learning with client-
level momentum. arXiv preprint arXiv:2106.10874 (2021)

32. Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation
for federated learning with non-iid data. In: Domain Adaptation and Representa-
tion Transfer, and Distributed and Collaborative Learning, pp. 150–159. Springer
(2020)


