
Supplementary Material
Theoretical Understanding of the Information

Flow on Continual Learning Performance

Joshua Andle and Salimeh Yasaei Sekeh

University of Maine, Orono ME 04469, USA
salimeh.yasaei@maine.edu

Here we first provide the full proofs of the theorems, and then validate our
analysis using the Permuted MNIST dataset. These experiments demonstrate
the effects that reducing the amount pruned on highly-connected layers has on
the performance of a VGG16 network and the connectivities between its layers.

Let us introduce the notations used in the Supplementary Material. We are given
a sequence of joint random variables (Xt, Tt), with realization space Xt×Tt where
(xt, yt) is an instance of the Xt × Tt space. We assume that a given DNN has a
total of L layers where,

– F (L): A function mapping the input space X to a set of classes T , i.e. F (L) :
X 7→ T .

– f (l): The l-th layer of F (L) with Ml as number of filters in layer l.

– f
(l)
i : i-th filter in layer l.

– F (i,j) := f (j) ◦ . . .◦f (i): A subnetwork which is a group of consecutive layers
f (i), . . . , f (j).

– F (j) := F (1,j) = f (j) ◦ . . . ◦ f (1): First part of the network up to layer j.

– σ(l): The activation function in layer l.

– f̃
(l)
t : Sensitive layer for task t.

– F̃
(L)
t := F

(L)
t /f̃

(l)
t : The network with L layers when l-th sensitive layer f̃ (l)

is frozen while training on task t.

– π(Tt): The prior probability of class label Tt ∈ Tt.
– ηtl, γtl: Thresholds for sensitivity and usefulness of l-th layer f (l) for task t.

– ω(1:i): The weight matrix of subnetwork F (1,i) := f (i) ◦ . . . ◦ f (1).

– ω(l): The l-layer’s weight matrix

– ω̃
(l)
t = m(l) ⊙ ω(l): pruned version of the l-layer weight matrix.

– w̃(1:L) =
(
ω(1:l−1), ω̃(l), ω(l+1,L)

)
: The weight matrix of network F (L) with

pruned l-layer.

– ω∗
t and ω̃∗

t : The convergent or optimum parameters after training F
(L)
t and

F̃
(L)
t has been finished for task t, respectively.

– ω
∗(l)
t : The optimal weight set for layer l and trained on task Tt.

– ω̃
∗(l)
t : The optimal weight set for layer l, masked and trained on task Tt.

https://orcid.org/0000-0002-0156-732X
https://orcid.org/0000-0002-0854-5422

2 J.Andle and S. Yasaei Sekeh

1 Proof of Theorem 1

Recall Definitions 1 and the Pearson correlation coefficient between the i-th filter
in l-layer and j-th filter in l + 1-layer defined in (2). By conditioning over task
labels, the function ρ becomes:

ρ(f
(l)
i , f

(l+1)
j |Tt) =

∑
yt∈Tt

π(yt)E
[
f
(l)
i (Xt)f

(l+1)
j (Xt)|Tt = yt

]
, (1)

where π(yt) is the prior probability. Thus the function ∆t(f
(l), f (l+1)) is written

as a proportion of the following term:

∆t(f
(l), f (l+1)) ∝

Ml∑
i=1

Ml+1∑
j=1

∑
yt∈Tt

π(yt)E
[
f
(l)
i (Xt)f

(l+1)
j (Xt)|Tt = yt

]

=

Ml∑
i=1

Ml+1∑
j=1

∑
yt∈Tt

π(yt)E
[
f
(l)
i (Xt) · σj(f

(l)
i (Xt))|Tt = yt

]
, (2)

where σj is the activation function and f
(l+1)
j (.) = σj(f

(l)
i (.)). Let σj be function

σj(s) = s.σj(s), therefore (2) turns into:

Ml∑
i=1

Ml+1∑
j=1

∑
yt∈Tt

π(yt)E
[
σj

(
f
(l)
i (Xt)

)
|Tt = yt

]

=

Ml∑
i=1

∑
yt∈Tt

π(yt)E

Ml+1∑
j=1

σj

(
f
(l)
i (Xt)

)
|Tt = yt

 . (3)

On the other hand recall Definitions 2, the term in (3) after conditioning on task
labels with prior probabilities π(yt) for yt ∈ Tt becomes

E(Xt,Tt)∼Dt

[
Tt ·Gl ◦f (l)(Kl−1 ◦Xt)

]
=
∑
yt∈Tt

π(yt)EXt|yt

[
yt.Gl ◦f (l)(Kl−1 ◦Xt)

]
.

(4)
For brevity we use Xt for Kl−1 ◦Xt. Let Gl be a function that maps layer f (l)

to a linear combination of filters i.e.

Gl : f
(l) 7−→

Ml∑
i=1

f
(l)
i ,

Therefore the right hand side of (4) turns into

∑
yt∈Tt

π(yt)EXt|yt

[
Ml∑
i=1

yt · f (l)
i (Xt)|Tt = yt

]

=

Ml∑
i=1

∑
yt∈Tt

ytπ(yt)EXt|yt

[
f
(l)
i (Xt)|Tt = yt

]
. (5)

Effects of Information Flow on CL Performance 3

Set β(s) :=
Ml+1∑
j=1

σj(s). We know that there exists a constant C such that

C E[s] ≥ E[s.β(s)]. This implies that

Ct

Ml∑
i=1

∑
yt∈Tt

ytπ(yt)EXt|yt

[
f
(l)
i (Xt)|Tt = yt

]

≥
Ml∑
i=1

∑
yt∈Tt

π(yt)E

Ml+1∑
j=1

σj

(
f
(l)
i (Xt)

)
|Tt = yt

 . (6)

Note that here a possible example of Ct =
Ml+1∑
j=1

Uj , where Uj is an upper bound

of σj . Notice here yt ≥ 1 for yt ∈ Tt. Under the assumption that layer f (l)

is t-task sensitive i.e. ∆t(f
(l), f (l+1)) ≥ ηtl, the RHS of (6) is bounded by a

proportion of ηtl. This combined with (2) implies that

Ml∑
i=1

∑
yt∈Tt

ytπ(yt)EXt|yt

[
f
(l)
i (Xt)|Tt = yt

]
≥ γtl. (7)

where γtl ∝ ηtl
/
Ct. This concludes that layer f

(l) is t-task useful.

2 Proof of Theorem 2

Let ω∗
t and ω̃∗

t be the convergent or optimum parameters after training F
(L)
t

and F̃
(L)
t has been finished for task t, respectively. In addition, training a classi-

fier is performed by minimizing a loss function (via empirical risk minimization
(ERM)) that decreases with the correlation between the weighted combination
of the features and the label defined in (6):

E(Xt,Tt)∼Dt

{
Lt(F

(L)
t (Xt), Tt)

}
= E(Xt,Tt)∼Dt

{Tt · ℓt(ω)} . (8)

Set δt(ω
∗
t |ω̃∗

t) := ℓt(ω
∗
t) − ℓt(ω̃

∗
t). The difference between training performance

of F (L) and F̃
(L)
t := F

(L)
t /f̃

(l)
t ∈ F , the network in which layer l is frozen while

training on task t, d(F
(L)
t , F̃

(L)
t), defined in (3) is given by

E(Xt,Tt)∼Dt
[Tt · δt(ω∗

t |ω̃∗
t)] = E(Xt,Tt)∼Dt

[
Tt ·

(
ℓt(ω

∗
t)− ℓt(ω̃

∗
t)
)]
. (9)

Using the arguments in [2] if we write the second order Taylor approximation of
ℓt around ω̃∗

t , we get

ℓt(ω
∗
t) ≈ ℓt(ω̃

∗
t) + (ω∗

t − ω̃∗
t)∇ℓt(ω̃

∗
t) +

1

2
(ω∗

t − ω̃∗
t)

T∇2ℓt(ω̃
∗
t)(ω

∗
t − ω̃∗

t), (10)

4 J.Andle and S. Yasaei Sekeh

where ∇2ℓt(ω̃
∗
t) is the Hessian for loss ℓt at ω̃

∗
t . Because the model is assumed to

converge to a stationary point where the gradient’s norm vanishes, ∇ℓt(ω̃
∗
t) = 0:

ℓt(ω
∗
t)− ℓt(ω̃

∗
t) ≈

1

2
(ω∗

t − ω̃∗
t)

T∇2ℓt(ω̃
∗
t)(ω

∗
t − ω̃∗

t). (11)

We use the property that the Hessian is positive semi-definite bound (11) by

ℓt(ω
∗
t)− ℓt(ω̃

∗
t) ≥ λ̃min

t ∥ω∗
t − ω̃∗

t ∥2, (12)

here λ̃min
t is the minimum eigenvalue of ∇2ℓt(ω̃

∗
t). This bounds (9) by

1

2
E(Xt,Tt)∼Dt

[
Tt ·

(
(ω∗

t − ω̃∗
t)

T∇2ℓt(ω̃
∗
t)(ω

∗
t − ω̃∗

t)
)]

(13)

≥ 1

2
E(Xt,Tt)∼Dt

[
Tt ·

(
λ̃min
t ∥ω∗

t − ω̃∗
t ∥2
)]

. (14)

Recall that the l-th layer is defined as f
(l)
t = σ

(l)
t (ωtXt). There exists a constant

C(l) such that

σ
(l)
t

(
(ω∗

t − ω̃∗
t)Xt

)
≤ C(l)

∣∣σ(l)
t (ω∗

tXt)− σ
(l)
t (ω̃∗

tXt)
∣∣. (15)

where |.| is the element-wise absolute value. Next in both sides of the Ineq.
(15) we map σ(l) ∈ Ll using Gl : Ll 7→ Tt, multiple to task Tt and take the
expectation:

E(Xt,Tt)∼Dt

[
Tt ·Gl ◦ σ(l)

t

(
(ω∗

t − ω̃∗
t)Xt

)]
≤ C(l) E(Xt,Tt)∼Dt

[
Tt ·Gl ◦

∣∣σ(l)
t (ω∗

tXt)− σ
(l)
t (ω̃∗

tXt)
∣∣] . (16)

Given distribution Dt, assuming that the l-th layer is t-task-useful, (3), we have

E(Xt,Tt)∼Dt

[
Tt ·Gl ◦ σ(l)

t

(
ωtXt

)]
≥ γtl, (17)

Let ωt = ω∗
t − ω̃∗

t in (17) and combined with (16), we get

E(Xt,Tt)∼Dt

[
Tt ·Gl ◦

∣∣σ(l)
t (ω∗

tXt)− σ
(l)
t (ω̃∗

tXt)
∣∣] ≥ γ̃tl, (18)

where γ̃tl = γtl
/
C(l). We assume that the activation σ(l) is Lipschitz continuous

since it is generally true for most of the commonly used activations in neural
networks such as Identity, ReLU, sigmoid, tanh, PReLU, etc. Then we know for

for any z, s, there exist a constant C
(l)
σ such that

|σ(l)(z)− σ(l)(s)| ≤ C(l)
σ |z− s|.

Then it is easy to see that∣∣σ(l)
t (ω∗

tXt)− σ
(l)
t (ω̃∗

tXt)
∣∣ ≤ C(l)

σ |ω∗
t − ω̃∗

t ||Xt|, (19)

Effects of Information Flow on CL Performance 5

We first apply two map functions Gl and Gl on left and right sides of the above
inequality to map them to the space Tt, second we multiply Tt, and take expec-
tation with respect to distribution Dt:

E(Xt,Tt)∼Dt

[
Tt ·Gl ◦

∣∣σ(l)
t (ω∗

tXt)− σ
(l)
t (ω̃∗

tXt)
∣∣]

≤ C(l)
σ E(Xt,Tt)∼Dt

[
Tt ·Gl ◦ |ω∗

t − ω̃∗
t ||Xt|

]
. (20)

Note that ω∗
t and ω̃∗

t are trained weight matrix from layers 1 to l with layer l
included and excluded in training respectively. Combining (18), (19), and (20),
we have

γ̃tl ≤ C(l)
σ E(Xt,Tt)∼Dt

[
Tt ·Gl ◦ |ω∗

t − ω̃∗
t ||Xt|

]
. (21)

Since |Xt| is bounded, there exist a constant Cx such that |Xt| ≤ Cx. Thus, we
have

Cγ ≤ E(Xt,Tt)∼Dt

[
Tt ·Gl ◦ |ω∗

t − ω̃∗
t |
]
. (22)

where Cγ = γ̃tl
/
CxC

(l)
σ . Let Gl : |ω∗

t − ω̃∗
t | 7→ λ̃min

t ∥ω∗
t − ω̃∗

t ∥2. This implies

K(γtl) ≤ E(Xt,Tt)∼Dt

[
Tt ·

(
λ̃min
t ∥ω∗

t − ω̃∗
t ∥2
)]

, (23)

is lower bounded by K(γtl) ∝ γtl
/
(C(l)CxC

(l)
σ which is an increasing function of

γtl. This concludes the proof and shows that in (9),

d(F
(L)
t , F̃

(L)
t) = E(Xt,Tt)∼Dt

[Tt · δt(ω∗
t |ω̃∗

t)] ≥ K(γtl).

3 Proof of Theorem 4

Let ω̃∗
t+1 be the optimal weight after training F̃

(L)
t+1 on task t+ 1. Following the

arguments and notations in the proof of Theorem 2:

E(Xt,Tt)∼Dt

{
Lt(F̃

(L)
t+1(Xt), Tt)− Lt(F

(L)
t (Xt), Tt)

}
= E(Xt,Tt)∼Dt

{
Tt ·

(
ℓt(ω̃

∗
t+1)− ℓt(ω

∗
t)
)}

. (24)

Subtract and add the term ℓt(ω̃
∗
t) in (3):

E(Xt,Tt)∼Dt

{
Tt ·

(
ℓt(ω̃

∗
t+1)− ℓt(ω̃

∗
t)
)
+ (ℓt(ω̃

∗
t)− ℓt(ω

∗
t))
}

= E(Xt,Tt)∼Dt

{
Tt ·

(
ℓt(ω̃

∗
t+1)− ℓt(ω̃

∗
t)
)}

+ E(Xt,Tt)∼Tt
{(ℓt(ω̃∗

t)− ℓt(ω
∗
t))} (25)

Using the arguments in [2] we know that

E(Xt,Tt)∼Dt

{
Tt ·

(
ℓt(ω̃

∗
t+1)− ℓt(ω̃

∗
t)
)}

≤ 1

2
E(Xt,Tt)∼Dt

{
Tt · λ̃max

t ∥ω̃∗
t+1 − ω̃∗

t ∥2
}
,

(26)

6 J.Andle and S. Yasaei Sekeh

where λ̃max
t is maximum eigenvalue of ∇2ℓt(ω̃

∗
t). Let w̃′

t be the convergent or

(near-)optimum parameters after training F̃
(L)
t has been finished for the first

task. Then
∥ω̃∗

t+1 − ω̃∗
t ∥ ≤ ∥ω̃∗

t+1 − ω̃′
t∥+ ∥ω̃′

t − ω̃∗
t ∥. (27)

Since ∥ω̃∗
t+1−ω̃′

t∥ is a constant, say C, we only need to bound ∥ω̃′
t−ω̃∗

t ∥. Consider
two different convergence criterion:

– ℓt(ω̃
′
t) − ℓt(ω̃

∗
t) ≤ ϵ: We write the second order Taylor approximation of ℓt

around ω̃∗
t :

ℓt(ω̃
′
t)− ℓt(ω̃

∗
t) ≈

1

2
(ω̃′

t − ω̃∗
t)

T∇2ℓt(ω̃
∗
t)(ω̃

′
t − ω̃∗

t) ≤
1

2
λ̃max
t ∥ω̃′

t − ω̃∗
t ∥2, (28)

where λ̃max
t is the maximum eigenvalue of ∇2ℓt(ω̃

∗
t). Hence the convergence

criterion can be written as 1
2 λ̃

max
t ∥ω̃′

t − ω̃∗
t ∥2 ≤ ϵ, equivalently

∥ω̃′
t − ω̃∗

t ∥2 ≤ 2
√
ϵ

λ̃max
t

(29)

– ∇2ℓt(w̃
′
t) ≤ ϵ: Write the first order Taylor approximation of ∇ℓt around ω̃∗

t :

∇ℓt(ω̃
′
t)−∇ℓt(ω̃

∗
t) ≈ ∇2ℓt(ω̃

∗
t)(ω̃

′
t − ω̃∗

t) ≤ λ̃max
t ∥ω̃′

t − ω̃∗
t ∥. (30)

Hence the convergence criterion can be written as λ̃max
t ∥ω̃′

t− ω̃∗
t ∥ ≤ ϵ, equiv-

alently

∥ω̃′
t − ω̃∗

t ∥ ≤ ϵ

λ̃max
t

. (31)

Denote Cϵ = max{ϵ, 2
√
ϵ}. Combining (29) and (31) we get the LHS of (26)

bounded by

1

2
E(Xt,Tt)∼Dt

Tt · λ̃max
t

(
C +

Cϵ

λ̃max
t

)2
 . (32)

Recalling Theorem 1, we obtain

E(Xt,Tt)∼Dt
{Tt · (ℓt(ω̃∗

t)− ℓt(ω
∗
t))} ≤ −K(γtl), (33)

where K(γtl) is an increasing function of γtl. Combining (32) and (33) in (3),
we have

E(Xt,Tt)∼Dt

{
Tt ·

(
ℓt(ω̃

∗
t+1)− ℓt(ω

∗
t)
)}

≤ 1

2
E(Xt,Tt)∼Dt

Tt · λ̃max
t

(
C +

Cϵ

λ̃max
t

)2
−K(γtl), (34)

By setting ϵ(λ̃max
t , γtl) the RHS of (3), the function ϵ is a decreasing function of

γtl for given λ̃max
t and the theorem is proved.

Effects of Information Flow on CL Performance 7

4 Proof of Theorem 5

Recall

– ω(1:i): The weight matrix of subnetwork F (1,i) := f (i) ◦ . . . ◦ f (1).
– ω(l): The l-layer’s weight matrix

– ω̃
(l)
t = m(l) ⊙ ω(l): pruned version of the l-layer weight matrix.

– w̃(1:L) =
(
ω(1:l−1), ω̃(l), ω(l+1,L)

)
: The weight matrix of network F (L) with

pruned l-layer.

The optimal weight matrix ω̃∗
t+1 with mask m∗

t+1:

ẼOt = E(Xt,Tt)∼Dt

{
|Tt ·

(
ℓt(ω̃

∗
t+1)− ℓt(ω

∗
t)|
)}

. (35)

By adding and subtracting term ℓt(ω
∗
t+1) in (35), we bound EOt by

ẼOt ≤ E(Xt,Tt)∼Dt

{
Tt · |

(
ℓt(ω̃

∗
t+1)− ℓt(ω

∗
t+1)|

)}
+ E(Xt,Tt)∼Dt

{
Tt · |

(
ℓt(ω

∗
t+1)− ℓt(ω

∗
t)|
)}

. (36)

Once we assume that only one connection is frozen in the training process, we
can use the following upper bound of the model [1]:

|ℓt(ω̃∗
t+1)− ℓt(ω

∗
t+1| ≤

∥ω∗(l)
t+1 − ω̃

∗(l)
t+1)∥F

∥ω∗(l)
t+1∥F

L∏
j=1

∥ω∗(l)
t+1∥F , (37)

where ∥.∥F is Frobenius norm. Here ω̃
∗(l)
t+1 is the optimal weight set for layer l,

masked and trained on task Tt+1, ω̃
∗(l)
t+1 = m∗(l)

t+1 ⊙ ω∗(l)
t+1, therefore

∥ω∗(l)
t+1 − ω̃

∗(l)
t+1∥F = ∥ω∗(l)

t+1 −m∗(l)
t+1 ⊙ ω∗(l)

t+1∥F = ∥ω∗(l)
t+1

(
1−m∗(l)

t+1

)
∥F .

The assumption P ∗(l)
m =

∥m∗(l)
t+1∥0

|ω∗(l)
t+1|

→ 1 (a.s.) is equivalent to
(
1−m∗(l)

t+1

)
→ 0

(a.s.). Therefore,

|ℓt(ω̃∗
t+1)− ℓt(ω

∗
t+1)| −→ 0 (a.s.) (38)

This implies that the term in the RHS of (36) convergences to zero. Now from
(7) in the proof of Theorem 1, if the l-th layer is fully sensitive i.e. ηtl → 1 then
γtl ∝ 1/Ct, where Ct is constant. Next using analogous arguments in (26)-(32)
in the proof of Theorem 2, we have

E(Xt,Tt)∼Dt

{
Tt · |

(
ℓt(ω

∗
t+1)− ℓt(ω

∗
t)|
)}

≤ 1

2
E(Xt,Tt)∼Dt

{
Tt · λmax

t

(
C +

Cϵ

λmax
t

)2
}
, (39)

where λmax
t is the maximum eigenvalue of ∇2ℓt(ω

∗
t). Here C and Cϵ are con-

stants.

8 J.Andle and S. Yasaei Sekeh

0 2 4 6 8 10 12 14
Layers Selected

95.0

95.5

96.0

96.5

97.0

97.5

98.0

Av
er

ag
e

Ta
sk

 A
cc

ur
ac

y

top-n selected
bottom-n selected

Impact of Layer Selection on Accuracy

0 1 2 3 4 5 6
Pruning Reduction k (%)

95.0

95.5

96.0

96.5

97.0

97.5

98.0

Av
er

ag
e

Ta
sk

 A
cc

ur
ac

y

Impact of k Selection on Accuracy

Fig. 1: The average accuracy across tasks of Permuted MNIST is reported for
varying values of n when k = 2% (left) and k when n = 4 (right), where n is
the number of layers selected for reduced pruning and k is the hyper-parameter
dictating how much the pruning on selected layers is reduced by. We compare
the performance when the n layers are selected as the most connected layers
(top-n) or least connected.

5 Further Experiments

5.1 Experimental Setup

For the experiments outlined here we use a VGG16 model on the Permuted
MNIST dataset to determine how the characteristics of information flow differ
from what we observed on split CIFAR-10/100. After training on a given task
Tt, and prior to pruning, we calculate ∆t(f

(l), f (l+1)) between each adjacent pair
of convolutional or linear layers as in Definition 1, (1). As a baseline we prune
80% of the unfrozen weights in each layer (freezing the remaining 20%), pruning
the lowest-magnitude weights. We run a single trial for each experiment.

5.2 Permuted MNIST Experiment

In this section we provide the results of implementing our experiments on the
Permuted MNIST dataset. For these experiments we vary the hyper-parameters
n and k, where n is the number of layers selected for reduced pruning and k is
the percent of pruning reduction provided to the selected layers. By varying n we
can see that unlike our observations with CIFAR-10/100, the overall performance
remains roughly the same as the baseline (Fig. 1) and selecting the bottom-n
layers performed as well as or better than selecting the top-n. To provide an
empirical observation of information downstream in the network’s layers, we
report the differences in connectivities for these experiments as well in Fig. 2.
Similarly to our findings with CIFAR-10/100, the changes to n don’t appear to
substantially alter the patterns in connectivity between layers that we observe
throughout the Permuted MNIST. As with CIFAR-10/100, we can see the trends
in subsequent tasks where the early layers’ connectivities increase throughout the
tasks and the later layers decrease.

Effects of Information Flow on CL Performance 9

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 C

o
n

n
e
ct

iv
it

y

Task 1 Task 2 Task 3 Task 4 Task 5

0 5 10 15 20 25 30 35
Layer Index

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 C

o
n

n
e
ct

iv
it

y

Task 6

0 5 10 15 20 25 30 35
Layer Index

Task 7

0 5 10 15 20 25 30 35
Layer Index

Task 8

0 5 10 15 20 25 30 35
Layer Index

Task 9

0 5 10 15 20 25 30 35
Layer Index

Task 10

n = 0
n = 1
n = 2
n = 4
n = 6
n = N

Fig. 2: The average connectivities across layers with the subsequent layer is re-
ported. The scores are plotted for each task in Permuted MNIST, when the
n most-connected layers are selected to have their pruning percent reduced by
k = 2%.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 C

o
n

n
e
ct

iv
it

y

Task 1 Task 2 Task 3 Task 4 Task 5

0 5 10 15 20 25 30 35
Layer Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 C

o
n

n
e
ct

iv
it

y

Task 6

0 5 10 15 20 25 30 35
Layer Index

Task 7

0 5 10 15 20 25 30 35
Layer Index

Task 8

0 5 10 15 20 25 30 35
Layer Index

Task 9

0 5 10 15 20 25 30 35
Layer Index

Task 10

k = 0
k = 1
k = 2
k = 3
k = 5

Fig. 3: For each layer the average connectivity value with the subsequent layer is
reported. The connectivities are plotted for each task in Permuted MNIST, for
various k when n = 4 most connected layers are selected for reduced pruning.

We demonstrate the effects of altering k on performance with Permuted
MNIST in 1. Once again, unlike with CIFAR-10/100 we observe similar or
slightly lower performance compared to the baseline which decreases as the per-
cent continues to increase. The effects of varying k on connectivity can be seen
in Fig. 3. The results we observe with Permuted MNIST closely match those
seen from CIFAR-10/100 for connectivities but not performances, which indi-
cates that although we observe similar patterns across experiments and tasks for
the two datasets, additional steps or a more systematic freezing approach may
need to be established to optimally apply our knowledge of information flow to

10 J.Andle and S. Yasaei Sekeh

different models. In addition, this observation provides an experimental evidence
that hyperparameters γtl and ηtl are data dependent.

References

1. Lee, J., Park, S., Mo, S., Ahn, S., Shin, J.: Layer-adaptive sparsity for the magnitude-
based pruning. In: International Conference on Learning Representations (2020)

2. Mirzadeh, S.I., Farajtabar, M., Pascanu, R., Ghasemzadeh, H.: Understanding the
role of training regimes in continual learning. Advances in Neural Information Pro-
cessing Systems 33, 7308–7320 (2020)

	Supplementary Material Theoretical Understanding of the Information Flow on Continual Learning Performance

