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Supplementary material for “HIVE: Evaluating the
Human Interpretability of Visual Explanations”

In this document, we provide additional details on some sections of the main
paper. Code is available at https://princetonvisualai.github.io/HIVE.

Section A: We provide more information on the evaluation tasks.

Section B: We provide more information on the four evaluated methods and
the modifications we made to their original explanation form.

Section C:: We provide more information about our human studies.

Section D: We report additional results and analyses.
• Section D.1: We supplement Section 5.2 of the main paper and discuss the
agreement study results with vs. without examples from the predicted class.

• Section D.2: We supplement Section 5.3 of the main paper and provide
more details on our analysis with automatic evaluation metrics.

• Section D.3: We supplement Section 5.4 of the main paper and discuss the
participants’ similarity ratings and decisions. We also provide a plot of the
participant vs. ProtoPNet prototype similarity ratings.

• Section D.4: We supplement Section 5.5 of the main paper and provide the
full results of our subjective evaluation.

• Section D.5: We supplement Section 5.6 of the main paper and provide the
full results of our interpretability-accuracy tradeoff study.

Section E: We show the simple decision tree model for fruit classification we
used to introduce ProtoTree.

Section F: We show snapshots of our full user interface.

A Details on the evaluation tasks

Agreement task. For each image, we show one model prediction-explanation
pair and ask the participants how confident they are in the model’s prediction.
We show 10 images in total (5 correct, 5 incorrect predictions in random order).
Participants rate their confidence in the given prediction on a 4-point scale (1:
confident prediction is incorrect, 2: somewhat confident prediction is incorrect,
3: somewhat confident prediction is correct, 4: confident prediction is correct).
Distinction task. For each image, we show four model prediction-explanation
pairs for it (in random order) and ask the participants to identify the correct
prediction based on the explanations. For GradCAM [10] and BagNet [1], partic-
ipants are tasked with 10 sample images (5 correct and 5 incorrect predictions),
each of which is shown with four heatmaps. On correctly predicted samples, the
four heatmaps correspond to the top-4 predicted classes. On incorrectly pre-
dicted ones, we show heatmaps for the top-3 predicted classes and the heatmap
of the ground-truth class. For ProtoPNet [2], we show four correctly predicted
samples in total. Each sample is presented with four explanations correspond-
ing to the top-4 predicted classes. We reduce the total number of samples and
focus on correctly predicted samples due to the complexity of the ProtoPNet

https://princetonvisualai.github.io/HIVE
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explanations; even with this change, the ProtoPNet study duration is twice as
long as that of GradCAM and BagNet. For ProtoTree [7], we show 10 correctly
predicted samples in total and ask participants to select the correct decisions on
the two final nodes which lead to four (22) different predictions.

Additionally for ProtoPNet [2] and ProtoTree [7], we ask participants to rate
the similarity of prototype-region pairs in both tasks using a 4-point Likert scale
(1: not similar, 2: somewhat not similar, 3: somewhat similar, 4: similar).

B Details on the evaluated interpretability methods

GradCAM [10]. For our ImageNet [9] studies, we generate GradCAM expla-
nations for the ResNet50 [5] model in the torchvision library which achieves
76.1% classification accuracy. For our CUB studies, we generate GradCAM ex-
planations for a ResNet50 [5] model we trained on the CUB [11] training set.
This model achieves 81.0% accuracy on the CUB test set. We used the code by
Gildenblat et al. [4] to generate GradCAM visualizations.1 For the agreement
task, we generate the GradCAM heatmap for the model prediction and normal-
ize it into the [0, 1] range. For the distinction task, we generate four GradCAM
heatmaps for each image: for correct predictions, we generate heatmaps for the
top-4 predictions; for incorrect predictions, we generate heatmaps for the top-3
predictions and for the ground-truth class. We identify the local minimum and
maximum of the four heatmaps, and then normalize the heatmaps into the [0,
1] range. This way, we preserve the intensity difference between heatmaps for
different predictions. See Fig. A1 for an example set of GradCAM explanations.

BagNet [1]. For our ImageNet studies, we use the BagNet33 model trained by
the original authors which achieves 66.7% accuracy on ImageNet classification.
For our CUB studies, we train a BagNet33 model on the CUB training set. This
model achieves 74.2% accuracy on the CUB test set. For the agreement task, we
use the authors’ code as is and normalize each heatmap individually by clipping
the values above the 99th percentile.2 On the other hand, for the distinction
task, we normalize the four heatmaps together so that we preserve the intensity
difference. See Fig. A2 for an example set of BagNet explanations.

1 https://github.com/jacobgil/pytorch-grad-cam
2 https://github.com/wielandbrendel/bag-of-local-features-models

Fig.A1. GradCAM explanations shown in the distinction task.

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/wielandbrendel/bag-of-local-features-models
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ProtoPNet [2]. For ProtoPNet, we used the ResNet34-based model trained
by Hoffmann et al. [6]. We pruned 331 prototypes from this model to improve
interpretability. The resulting model has 1669 prototypes and achieves 79.9% ac-
curacy on the CUB [11] test set. For generating explanations, we used the code
by the original authors with some modifications which we describe below.3 In
our studies, given an explanation, participants are asked to rate the similarity of
each prototype-region pair, then either rate the level of confidence in the predic-
tion’s correctness (agreement) or select the correct class (distinction). To make
ProtoPNet’s explanations more suitable for these tasks, we made the following
modifications to the original explanation form.

– The ProtoPNet model calculates evidence for all classes using the learned
prototypes, then predicts the class with the highest evidence. However, we
deemed it is unrealistic to ask users to review explanations for all 200 bird
classes in CUB. Hence, we only present explanations for one (agreement) or
four (distinction) classes and ask users to examine them.

– The original explanation (Fig. A3 left) shows activation maps, similarity
scores, class connection weights, and the total class evidence. In our version
(Fig. A3 right) we remove them as we seek to investigate what participants
rate as similar and not.

– In the original explanation, prototypes are presented in the order of highest to
lowest similarity. In ours, we randomly shuffle the order of prototypes because
we don’t want to skew the participants’ region-prototype similarity ratings.

ProtoTree [7]. For ProtoTree, we used the model trained by the original au-
thors which achieves 81.7% accuracy on the CUB [11] test set. This model is a
pruned tree of depth 10 and 511 nodes. We used the authors’ code to generate
explanations with some modifications we describe below.4

– Same as what we did for ProtoPNet explanations, we removed the similarity
scores as we seek to investigate what participants rate as similar and not.

– For the local explanation, we converted the horizontal explanation (Fig. A4)
into a vertical one (Fig. A5). A vertical explanation is a better representation
of how the model reasons, as the model starts from the root node and proceeds
down the tree until it reaches one of the bottom leaves. Further, it is easier
for the participants to examine the explanation by scrolling up and down.

3 https://github.com/cfchen-duke/ProtoPNet
4 https://github.com/M-Nauta/ProtoTree

https://github.com/cfchen-duke/ProtoPNet
https://github.com/M-Nauta/ProtoTree
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Fig.A2. BagNet explanations shown in the distinction task.

Fig.A3. ProtoPNet original and modified explanations. The original explana-
tion (left) taken from the original paper [2] contains details such as activation maps,
similarity scores, and class connection weights. In our version (right), we remove these
to abstract away the complexities and have the participants focus on examining the
similarity between prototypes and their matched image regions.
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Fig.A4. ProtoTree original explanation. We show the original explanation dis-
played in Fig. 9 of the original paper [7]. See Fig. A5 for our modified explanation.

Fig.A5. ProtoTree modified explanation. See Fig. A4 for the original explanation.
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C Details on the human studies

We ran our study through Human Intelligence Tasks (HITs) deployed on Amazon
Mechanical Turk (AMT). We recruited participants who are US-based, have done
over 1000 HITs, and have prior approval rate of at least 98%. For each study, we
deployed 10 HITs, each with a different set of input images and explanations. To
reduce the variance with respect to the input, we had 5 participants complete
each HIT, so each study had 50 participants. Participants were compensated
based on the state-level minimum wage of $12/hr.

The demographic distribution was: man 60%, woman 38%, non-binary 1%,
no gender reported 1%; White 74%, Black/African American 9%, Asian 7%,
no race/ethnicity reported 7%, Hispanic/Latino/Spanish Origin of any race 2%,
American Indian/Alaska Native 1%, Native Hawaiian/Other Pacific Islander 0%.
The self-reported machine learning experience was 2.5 ± 1.0, between “2: have
heard about...” and “3: know the basics...” The average study duration was 6.9
± 3.5 minutes for GradCAM, 6.6 ± 3.5 for BagNet, 13.6 ± 6.2 for ProtoPNet,
and 10.4 ± 3.1 for ProtoTree.

D Additional results and analyses

D.1 Agreement study results with vs. without example images

In Section 5.2 of the main paper, we described the results of our agreement study.
Here we provide additional results.

Fig.A6. BagNet agreement study input with example images. For the study
version with example images, we additionally show three example images from the
predicted class (highlighted in the blue box).
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For GradCAM and BagNet, we run another version of the agreement study
where we show three example images from the predicted class, in addition to the
test image, prediction, and heatmap (see Fig. A6). Since ProtoPNet and Pro-
toTree explanations consist of source images of the learned prototypes, we take
this measure to provide similar supplementary information for GradCAM and
BagNet. As expected, participants improve on the task when they see example
images from the predicted class (5.3% overall improvement for GradCAM, 7.1%
for BagNet). However, even with the help of example images, participants tend to
believe in incorrect predictions, which suggests that incorrect top-1 predictions
from high-performance models such as ResNet50 and BagNet are oftentimes con-
vincing. Between CUB and ImageNet, task accuracy is overall higher on CUB,
but both yield similar insights. See Tab. A1 for full results.

Table A1. Agreement study results with vs. without examples. For each study,
we show mean accuracy, standard deviation of the participants’ performance, and mean
confidence rating in parentheses. Italics denotes methods with accuracy not statistically
significantly different from 50% random chance (p > 0.05); bold denotes the highest
performing method in each group. In all studies, participants leaned towards
believing that model predictions are correct when provided explanations,
regardless of if they are actually correct. For example, for GradCAM on CUB,
participants thought 72.4% of correct predictions were correct and 100− 32.8 = 67.2%
of incorrect predictions were correct. These results reveal an issue of confirmation bias.
Comparing results with vs. without example images from the predicted
class, participants improve on the task when they see examples, but still
tend to believe in incorrect predictions. See Appendix D.1 for a discussion.

CUB GradCAM [10] w/ examples BagNet [1] w/ examples

Correct 72.4% ± 21.5 (2.9) 83.2% ± 15.7 (3.3) 75.6% ± 23.4 (3.0) 83.6% ± 17.3 (3.3)
Incorrect 32.8% ± 24.3 (2.8) 36.8% ± 22.8 (2.8) 42.4% ± 28.7 (2.7) 44.4% ± 30.5 (2.6)

ImageNet GradCAM [10] w/ examples BagNet [1] w/ examples

Correct 70.8% ± 26.6 (2.9) 78.4% ± 25.6 (3.2) 66.0% ± 27.2 (2.8) 77.2% ± 23.3 (3.2)
Incorrect 44.8% ± 31.6 (2.7) 43.6% ± 32.4 (2.6) 35.6% ± 26.9 (2.7) 42.8% ± 32.7 (2.6)

D.2 Analysis with automatic evaluation metrics

In Section 5.3 of the main paper, we briefly summarized our analysis with auto-
matic evaluation metrics. Here we discuss the results in more detail.

We further analyzed GradCAM heatmaps set using three automatic evalua-
tion metrics: pointing game [13], energy-based pointing game (energy game) [12],
and intersection-over-union (IoU) [14]. Pointing game considers a heatmap cor-
rect when its highest-intensity point lies inside the segmentation/bounding-box
annotation. Energy game calculates how much energy in a heatmap falls in-
side the segmentation/bounding-box annotation. IoU captures the amount of
overlap between a binarized heatmap (according to some threshold) and the
segmentation/bounding-box annotation. For all three metrics, higher values in-
dicate better localization quality.
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We evaluate up to three GradCAM explanations per image, all using the same
segmentation/bounding-box annotation for the ground-truth class: heatmaps for
the ground-truth class, predicted class, and class with the second-highest score.
Results are summarized in Tab. A2. For CUB heatmaps, we calculate the three
metrics on the entire test set (top table). For ImageNet heatmaps, we calcu-
late the metrics on 5,000 randomly sampled validation images. Since ImageNet
images sometimes have multiple bounding box annotations, we report results
evaluated with one bounding box that yields the best result (middle table) and
results evaluated with the union of bounding boxes (bottom table). We find that
all three metrics are highest on the ground-truth/predicted class heatmaps for
correctly predicted samples. However, we find that these metrics are also high
for other heatmaps, even when they are for wrong classes.

Next, we calculate these metrics on images/heatmaps we showed the partic-
ipants and analyze our human study results. In the agreement study, we find
near-zero correlation between participants’ confidence in the model prediction
and localization quality of heatmaps. In the distinction study, we also do not
see meaningful relationships between participants’ choices and these automatic
metrics, possibly because all four heatmaps have similar localization quality.
These observations are consistent with the findings of [8,3], i.e., automatic met-
rics poorly correlate with human performance in post-hoc attribution heatmap
evaluation. Overall, our analysis reveals a limitation of automatic metrics.

D.3 Similarity judgment of humans vs. prototype-based models

In Section 5.4 of the main paper, we quantified the gap between prototype-based
models and human users’ notion of similarity. Here we show a plot of participant
vs. ProtoPNet prototype similarity rating (Fig. A7). There is no significant neg-
ative correlation between the two. This result suggests a gap between ProtoPNet
and human judgments of similarity.

Nonetheless, we find that participants are consistent in their similarity ratings
and decisions. When examining ProtoPNet and ProtoTree explanations, on av-
erage participants assign higher similarity ratings to prototypes of the class they
select to be correct (2.9 out of 4 for both ProtoPNet agreement and distinction
tasks, 2.4 for ProtoTree agreement) and lower similarity ratings to prototypes of
the class they select to be incorrect (2.0 and 2.1 for ProtoPNet agreement and
distinction, 2.0 for ProtoTree agreement). The similarity ratings between the two
groups are statistically significantly different in all studies. This suggests that
participants understand how the model reasons (i.e., they predict the bird class
whose prototypes appear most similar to the given photo).
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Table A2. Evaluation of GradCAM heatmaps using automatic metrics. We
report the mean and standard deviation of three automatic evaluation metrics calcu-
lated on heatmaps for the ground-truth class, predicted class, and class with the second-
highest score. All three metrics are highest on the ground-truth/predicted
class heatmaps for correctly predicted samples. However, these metrics are
also high for other heatmaps, even when they are for wrong classes.

CUB [11] heatmaps evaluated with the segmentation mask

Prediction Class Pointing game [13] Energy game [12] IoU [14]

Correct
GT/Predicted 0.92 ± 0.27 0.12 ± 0.07 0.38 ± 0.15
Second-highest 0.74 ± 0.44 0.09 ± 0.06 0.24 ± 0.15

Incorrect
GT 0.73 ± 0.45 0.08 ± 0.06 0.23 ± 0.16

Predicted 0.83 ± 0.37 0.09 ± 0.06 0.29 ± 0.15
Second-highest 0.80 ± 0.40 0.09 ± 0.06 0.26 ± 0.15

ImageNet [9] heatmaps evaluated with the bounding box that yields the best result

Prediction Class Pointing game [13] Energy game [12] IoU [14]

Correct
GT/Predicted 0.95 ± 0.22 0.27 ± 0.13 0.60 ± 0.28
Second-highest 0.93 ± 0.26 0.26 ± 0.13 0.60 ± 0.27

Incorrect
GT 0.91 ± 0.29 0.23 ± 0.14 0.52 ± 0.31

Predicted 0.82 ± 0.38 0.22 ± 0.15 0.52 ± 0.33
Second-highest 0.84 ± 0.37 0.23 ± 0.15 0.52 ± 0.33

ImageNet [9] heatmaps evaluated with the union of the bounding boxes

Prediction Class Pointing game [13] Energy game [12] IoU [14]

Correct
GT/Predicted 0.95 ± 0.22 0.29 ± 0.13 0.65 ± 0.26
Second-highest 0.93 ± 0.26 0.28 ± 0.13 0.64 ± 0.26

Incorrect
GT 0.91 ± 0.29 0.24 ± 0.14 0.56 ± 0.30

Predicted 0.82 ± 0.38 0.24 ± 0.15 0.56 ± 0.32
Second-highest 0.84 ± 0.37 0.24 ± 0.15 0.56 ± 0.32

Fig.A7. Participant vs. ProtoPNet prototype similarity rating. There exists a
gap between ProtoPNet’s similarity scores and human judgments of similarity (Spear-
man’s ρ = −0.25, p = 0.49 for distinction; ρ = −0.52, p = 0.12 for agreement).
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D.4 Subjective evaluation results

In Section 5.5 of the main paper, we summarized our subjective evaluation re-
sults. Here we provide the full results.

In Tab. A3, we report the participants’ self-rated level of understanding of
the given model’s reasoning process. Overall, the participants rated their level
of understanding between 3 (fair) and 4 (good). Interestingly, we find that the
rating tends to decrease after the participants see their task performance. Sev-
eral participants indicated that their performance was lower than what they
expected: “I thought I would do a bit better!”, “my score wasn’t as high as I
would have liked”, “I was surprised that my score was not very much higher than
random guessing. I thought I had a good idea of the model, especially making
judgements about the amount of positive and negative evidence, but it seems I
did not.” No one suggested the opposite. This trend suggests that participants
might have been disappointment in their task performance, which in turn led
them to lower their self-rated level of method understanding.

Table A3. Participants’ self-rated level of method understanding. We report
the mean and standard deviation of the participants’ self-rating of their method un-
derstanding. Participants provide ratings three times: after reading about the method
(post-intro), after completing the task (post-task), and after learning about their task
performance (post-results). The rating tends to decrease after the participants see their
task performance (p < 0.05).

Dataset Method Study Post-intro Post-task Post-results

CUB [11]

GradCAM [10]

Agreement 3.7± 0.9 3.8± 0.9 3.3± 1.1
Agreement w/ examples 3.7± 1.0 3.9± 0.7 3.4± 1.0
Distinction 3.4± 1.0 3.5± 1.2 3.6± 0.8

BagNet [1]
Agreement 3.5± 1.0 3.7± 0.8 3.3± 1.1
Agreement w/ examples 3.7± 0.8 3.9± 0.8 3.6± 1.0
Distinction 3.8± 0.7 4.0± 0.8 3.9± 0.8

ProtoPNet [2]
Agreement 3.9± 0.8 4.0± 0.8 3.7± 0.8
Distinction 4.1± 0.8 3.9± 0.8 3.7± 1.1

ProtoTree [7]
Agreement 3.7± 0.8 3.7± 1.0 3.4± 0.8
Agreement (tree) 3.7± 0.7 3.5± 0.9 3.2± 1.1
Distinction 3.4± 1.0 3.6± 1.1 3.3± 1.2

ImageNet [9]

GradCAM [10]

Agreement 3.7± 0.9 3.9± 0.9 3.0± 1.0
Agreement w/ examples 3.4± 0.8 3.7± 0.8 3.5± 0.9
Distinction 3.9± 0.9 3.7± 1.0 3.7± 1.0
Distinction w/ labels 3.9± 0.9 3.8± 1.0 3.8± 0.9

BagNet [1]

Agreement 3.7± 0.8 3.9± 0.7 3.4± 1.0
Agreement w/ examples 3.8± 0.9 3.9± 0.9 3.3± 1.0
Distinction 3.9± 0.8 3.9± 0.8 3.8± 1.0
Distinction w/ labels 3.8± 0.9 4.0± 0.8 3.8± 0.8

Mean across all studies 3.7± 0.9 3.8± 0.9 3.5± 1.0
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D.5 Interpretability-accuracy tradeoff results

In Section 5.6 of the main paper, we summarized our interpretability-accuracy
tradeoff study results. Here we provide more details.

In Tab. A4 and Fig. A8, we show the full results of our interpretability-
accuracy tradeoff study. We report the accuracy of the evaluated interpretable
model and the minimum accuracy of a baseline model that participants require
in order to use it over the model with explanations under different risk settings.
Across all studies, we find that participants require the baseline model to have
higher accuracy than the evaluated interpretable model, and input a higher
accuracy requirement for higher-risk settings. On average, participants require
the baseline model to have +6.2% higher accuracy for low-risk (e.g., bird species
recognition for scientific or educational purposes), +8.2% for medium-risk (e.g.,
object recognition for automatic grocery checkout), and +10.9% for high-risk
(e.g., scene understanding for autonomous driving) settings.

We observe this trend in the participants’ written responses as well. Most
participants write that they would use the baseline model only when it has higher
accuracy than the evaluated interpretable model: “I would need the black box
model to give me a nice boost in accuracy, or I would just stick to the bagnet
model, since it is pretty accurate.” On the contrary, participants exhibit different
levels of desire for interpretability. Some deem interpretability as important:
“Understanding how a prediction works is important. For me to accept a model
with no explanations, the level of accuracy needs to be higher”, “I prefer to
understand how models work, so the black box model has to be significantly
better than the other model for me to use it. As the stakes become higher, I
want its accuracy to be higher because there’s no way for me to question or check
its progress if it’s wrong.” Other participants willingly tradeoff interpretability
for accuracy: “I don’t need to know how it works. So, as long as it’s marginally
better, it should be used”, “I don’t care about not having an explanation, so
if the accuracy of a different model has just a 1% improvement in performance
then I would choose the better performing model.”

Nonetheless most participants express a need for higher-accuracy models in
higher-risk settings: “The higher the risk, the more accurate I need it to be in
order to feel confident using it”, “If I were to choose to use a model that did
not provide reasoning for me to utilize in evaluating how the decision was made
I would need to know that the model would give me significantly better results,
especially in a high-risk scenario as described above, but even in the medium
risk setting, being able to asses the reasoning of the model is an invaluable tool
and I would only be willing to give it up for significant increases in accuracy.”
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Table A4. Interpretability-accuracy tradeoff results. We report the mean and
standard deviation of the additional accuracy participants require for the baseline
model, to use it over the model with explanations. For example in the GradCAM
agreement study with CUB, participants require the baseline model to have +5.6%
accuracy beyond the model that comes with GradCAM explanations and achieves
81.0% accuracy, in the low-risk setting. See Fig. A8 for a visualization of the results.

Dataset Method Study Orig Low-risk Med-risk High-risk

CUB [11]

GradCAM [10]

Agreement

81.0

+5.6 (±6.9) +6.2 (±5.7) +7.7 (±7.0)
Agreement w/ examples +4.2 (±6.1) +5.7 (±5.7) +7.7 (±7.5)
Distinction +2.9 (±6.9) +4.5 (±5.2) +8.1 (±6.9)

BagNet [1]

Agreement

74.2

+6.8 (±7.9) +7.8 (±8.1) +12.3 (±9.2)
Agreement w/ examples +6.1 (±7.1) +8.1 (±6.3) +10.7 (±9.2)
Distinction +7.0 (±8.1) +8.8 (±7.4) +8.4 (±8.4)

ProtoPNet [2]
Agreement

79.9
+5.8 (±6.6) +7.8 (±4.9) +9.4 (±6.6)

Distinction +4.1 (±7.9) +6.1 (±6.4) +9.7 (±7.1)

ProtoTree [7]

Agreement

81.7

+3.8 (±6.5) +4.2 (±6.3) +5.1 (±6.5)
Agreement (tree) +3.7 (±5.5) +5.8 (±5.1) +6.7 (±6.6)
Distinction +5.1 (±5.7) +6.4 (±5.8) +9.2 (±6.2)

ImageNet [9]

GradCAM [10]

Agreement

76.1

+6.3 (±7.6) +8.1 (±8.6) +11.8 (±10.7)
Agreement w/ examples +4.8 (±6.8) +8.6 (±7.6) +11.4 (±10.8)
Distinction +5.3 (±7.3) +9.8 (±6.7) +12.4 (±8.6)
Distinction w/ labels +7.6 (±7.7) +9.3 (±7.9) +13.2 (±9.0)

BagNet [1]

Agreement

66.7

+9.9 (±7.5) +14.1 (±9.5) +17.5 (±11.1)
Agreement w/ examples +9.7 (±8.5) +13.2 (±10.4) +17.6 (±13.0)
Distinction +7.9 (±9.3) +9.6 (±9.2) +11.2 (±11.2)
Distinction w/ labels +11.4 (±9.2) +12.4 (±10.4) +16.6 (±11.6)

Mean across all studies +6.2 (±7.7) +8.2 (±7.9) +10.9 (±9.7)

Fig.A8. Visualization of the interpretability-accuracy tradeoff results. This
plot shows that participants desire higher accuracies for the baseline model, especially
in higher-risk settings. See Tab. A4 for the full results.
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E Simple decision tree used for explaining ProtoTree

One additional challenge of evaluating the ProtoTree model is that participants
may not be familiar with decision trees. To mitigate this challenge, we introduce
a simple decision tree model for fruit classification before introducing ProtoTree.
This simple decision tree model takes in an input image and makes an output
classification (Class A, B, C, D, E) based on three decision nodes. We first
walk through the participants through an example. We then present two warm-
up exercises so that the participants can become more familiar with decision
trees. When the participants submit their answers, we also provide the correct
answer and the reason for it. Participants achieved 86.5% performance on this
task, implying that the low task accuracy for ProtoTree is not due to a lack of
comprehension of decision trees. See Fig. A9 for the UI.

Fig.A9. A simple decision example. We use this model to introduce participants
to decision trees before explaining the more complex ProtoTree. See Appendix E for
details.
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F UI snapshots

In Section 4 of the main paper, we outlined our study design. Here we provide
snapshots of our study UIs in the following order.

1. Study introduction. For each participant, we first briefly introduce the
study and receive their informed consent. The consent form was approved by
the IRB and acknowledges that participation is voluntary, refusal to participate
will involve no penalty or loss of benefits, etc. See Fig. A10.

2. Demographics and background. To help future researchers calibrate
our results and do proper comparison, we request optional demographic data
regarding gender identity, race and ethnicity. We also ask the participant’s ex-
perience with machine learning. See Fig. A11.

3. Method introduction.We introduce each interpretability method/model
in simple terms. See Fig. A12.

4. Task preview and first subjective evaluation. To encourage partic-
ipants to carefully read the method explanation, we show a preview of the task
they will complete along with a correct and incorrect prediction. Participants
then answer their first subjective evaluation question. In Fig. A13 we shown an
example from the ProtoPNet agreement study.

5. Task. Participants then proceed onto the main task. We show the UI for
the following 8 studies:

– GradCAM distinction (Fig. A14)
– GradCAM agreement (Fig. A15)
– Bagnet distinction (Fig. A16)
– Bagnet agreement (Fig. A17)
– ProtoPNet distinction (Fig. A18)
– ProtoPNet agreement (Fig. A19)
– ProtoTree distinction (Fig. A20)
– ProtoTree agreement (Fig. A21)

6. Second and third subjective evaluation. After the task, participants
complete their second subjective evaluation question. We then disclose their task
performance and ask the third subjective evaluation question. These questions
allow us to investigate if the participants’ self-rated level of method understand-
ing undergoes any changes throughout the study. See Fig. A22.

7. Interpretability-accuracy tradeoff. Finally, we investigate the tradeoff
participants are willing to make when comparing the evaluated interpretable
model against a baseline model that doesn’t come with any explanation. We
present three scenarios to the participants: low-risk (e.g., scientific or educational
purposes), medium-risk (e.g., object recognition for automatic grocery checkout),
and high-risk (e.g., scene understanding for self-driving cars). We then ask them
to input the minimum accuracy of a baseline model that would convince them to
use the baseline model over the model that comes with explanations and briefly
describe their reasoning. See Fig. A23.
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Fig.A10. 1. Study introduction.

Fig.A11. 2. Demographics and background.
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Fig.A12. 3. Method introduction. BagNet (top left), GradCAM (top right), Pro-
toPNet (bottom left), ProtoTree (bottom right).

Fig.A13. 4. Task preview and first subjective evaluation.
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Fig.A14. 5. Task: GradCAM distinction.

Fig. A15. 5. Task: GradCAM agreement.
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Fig.A16. 5. Task: BagNet distinction.

Fig. A17. 5. Task: BagNet agreement.
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Fig.A18. 5. Task: ProtoPNet distinction.
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Fig.A19. 5. Task: ProtoPNet agreement.
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Fig.A20. 5. Task: ProtoTree distinction.
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Fig.A21. 5. Task: ProtoTree agreement.
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Fig.A22. 6. Second and third subjective evaluation.

Fig.A23. 7. Interpretability-accuracy tradeoff.



24

References

1. Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models
works surprisingly well on imagenet. In: ICLR (2019)

2. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that:
Deep learning for interpretable image recognition. In: NeurIPS (2019)

3. Fel, T., Colin, J., Cadène, R., Serre, T.: What I cannot predict, I do not understand:
A human-centered evaluation framework for explainability methods (2021)

4. Gildenblat, J., contributors: PyTorch library for CAM methods. https://github.
com/jacobgil/pytorch-grad-cam (2021)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

6. Hoffmann, A., Fanconi, C., Rade, R., Kohler, J.: This looks like that... does it?
Shortcomings of latent space prototype interpretability in deep networks. In: ICML
Workshop on Theoretic Foundation, Criticism, and Application Trend of Explain-
able AI (2021)

7. Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-
grained image recognition. In: CVPR (2021)

8. Nguyen, G., Kim, D., Nguyen, A.: The effectiveness of feature attribution methods
and its correlation with automatic evaluation scores. In: NeurIPS (2021)

9. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV (2015)

10. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: Visual explanations from deep networks via gradient-based localization. In:
ICCV (2017)

11. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Tech-
nology (2011)

12. Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., Hu, X.:
Score-CAM: Score-weighted visual explanations for convolutional neural networks.
In: CVPR Workshops (2020)

13. Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by
excitation backprop. In: ECCV (2016)

14. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR (2016)

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

