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A Supplementary Material

A.1 Resource Access

Code Repository: Code for the MISO generator and downstream analyses
(e.g., code to generate Interpretability Report Cards) can be found at https:
//github.com/gmachiraju/codex-analysis

Benchmarking Datasets: The described datasets (MISO-1 and MISO-2) are
available at the following link: https://drive.google.com/drive/folders/1
fOtOn6M41y0VXHtNyxO513Hf5hOphRNa?usp=sharing

A.2 Acknowledgements

Funding: The authors are grateful for institutional support from Stanford
Data Science, as well as Biomedical Informatics Training Program at Stan-
ford 2T15LM007033. The authors are also grateful for the support of this re-
search through DARPA Deep Purple Program through DOI program award
D17AC00006, DARPA SIMPLEX program award W911NF-15-1-0555, DARPA
PAI program award HR00111890036, and NIH awards 1R01GM117097 and
5R01CA249899.

Software Licenses: Figure 1, Figure 2, and Figure 6 were created with BioRen-
der.com.

A.3 MISO-1 Data Generation & Dataset Specifications

To generate MISO-1, we collected 24 source images from Google Images as input
bitmaps (e.g., RGB color images). The input bitmaps were chosen for their
objects’ varied large-scale morphologies and textures, ultimately helping us define
borders and foreground regions for downstream image processing. Please refer to
Figure 5, associated hyperlinks, copyright, and terms of service in the following
subsections.

MISO, written in Python 3.6, takes 2D bitmaps as inputs, rescales them
to megapixel size, binarizes them into binary masks (either through manual
or automatic thresholds) with 1-valued foregrounds and 0-valued backgrounds,
and then generates training and testing images for its six separate scenarios by
manipulating the masks’ pixel values (e.g., flipping binary values, performing
Hadamard products with other masks, applying distortions) and selecting class
members. To aid in dataset variation and di�culty, all images have corresponding
versions generated with “salt or pepper” fuzziness (i.e., a pixel can take on the
opposite extreme value of the large scale morphology with 10% probability).
Finally, all images are given uniform random-noise backgrounds between [0,1]
that can be filtered or unfiltered before model training and testing to modulate
the degree of supervision. A graphical depiction of the pipeline can be found in

https://github.com/gmachiraju/codex-analysis
https://github.com/gmachiraju/codex-analysis
https://drive.google.com/drive/folders/1fOtOn6M41y0VXHtNyxO513Hf5hOphRNa?usp=sharing
https://drive.google.com/drive/folders/1fOtOn6M41y0VXHtNyxO513Hf5hOphRNa?usp=sharing
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Figure 6. MISO-1 images are all at least 2000⇥ 2000 pixels large and can reach
approximately 7000 pixels in either dimension. After performing patching and
patch filtering, roughly 80,000 to 100,000 patches are available for training per
scenario. MISO-2 is comprised of 3072 ⇥ 3072 images, yielding approximately
40,000 training patches for our selected patch size.

Fig. 5: MISO-1’s input 2D bitmaps.

Existing assets — source images for MISO-1: We accessed all 24 source
images used in this study (as 2D input bitmaps for MISO) via Google Images.
We claim Fair Usage of the source images (and any of its protected works)
for the following reasons: (1) solely reading the source images into a computer
program (i.e., MISO) and not distributing the images themselves, copies, or
adaptations of them; (2) generating synthetic images that use source images
loosely but incorporate multiple substantial aesthetic modifications made through
MISO (e.g., binarization, noisy background creation, addition of fuzziness, etc. as
discussed in the following section); and (3) only distributing the final synthetic
image dataset for educational and research purposes. Finally, we underscore the
nonprofit, educational, and research-driven nature of MISO’s synthetic dataset
creation of MISO-1. Links to either the image or link address are below (with
the shorter one listed):

1. https://vignette.wikia.nocookie.net/79e4f646-c685-4c69-8ace-
d45f7805253a/scale-to-width-down/1200

2. https://www.logodesignlove.com/wp-content/uploads/2011/04/jerr
y-west-nba-logo.jpg

3. https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.meme-
arsenal.com%2Fen%2Fcreate%2Ftemplate%2F1519250&psig=AOvVaw3Vyu
0Qkdywn3rHVYueQbYo&ust=1633632975111000&source=images&cd=vfe&v
ed=0CAsQjRxqFwoTCLCHo5y7tvMCFQAAAAAdAAAAABAI

4. https://i.insider.com/5af0a543bd96711f008b4623?width=1136&for
mat=jpeg

https://vignette.wikia.nocookie.net/79e4f646-c685-4c69-8ace-d45f7805253a/scale-to-width-down/1200
https://vignette.wikia.nocookie.net/79e4f646-c685-4c69-8ace-d45f7805253a/scale-to-width-down/1200
https://www.logodesignlove.com/wp-content/uploads/2011/04/jerry-west-nba-logo.jpg
https://www.logodesignlove.com/wp-content/uploads/2011/04/jerry-west-nba-logo.jpg
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.meme-arsenal.com%2Fen%2Fcreate%2Ftemplate%2F1519250&psig=AOvVaw3Vyu0Qkdywn3rHVYueQbYo&ust=1633632975111000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCLCHo5y7tvMCFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.meme-arsenal.com%2Fen%2Fcreate%2Ftemplate%2F1519250&psig=AOvVaw3Vyu0Qkdywn3rHVYueQbYo&ust=1633632975111000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCLCHo5y7tvMCFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.meme-arsenal.com%2Fen%2Fcreate%2Ftemplate%2F1519250&psig=AOvVaw3Vyu0Qkdywn3rHVYueQbYo&ust=1633632975111000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCLCHo5y7tvMCFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.meme-arsenal.com%2Fen%2Fcreate%2Ftemplate%2F1519250&psig=AOvVaw3Vyu0Qkdywn3rHVYueQbYo&ust=1633632975111000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCLCHo5y7tvMCFQAAAAAdAAAAABAI
https://i.insider.com/5af0a543bd96711f008b4623?width=1136&format=jpeg
https://i.insider.com/5af0a543bd96711f008b4623?width=1136&format=jpeg
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Fig. 6: A schematic of the pipeline used by the MISO generator pipeline to construct
MISO-1.
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A.4 Design Configurations for Patch-based Convolutional Neural

Networks

This section outlines and summarizes major design configurations observed in the
literature. These choices conceivably can each impact prediction and explanation
correctness. Thus, future studies should explicitly state configuration choices to
facilitate the benchmarking process.

Preprocessing Configurations

Patch size: This is a major hyperparameter for PatchCNNs. This must be
chosen based on application domain (i.e., image resolution, pixel count, expected
object sizes, etc.) to balance the trade-o↵ between a su�ciently large training
set size and su�cient patch heterogeneity. Namely, the larger the patch size, the
dataset gains patch heterogeneity due to containing more objects or a larger
fraction of objects. However, this leads to smaller training and testing set sizes.
The smaller the patch size, a dataset can lose patch heterogeneity, but can enjoy
larger training and testing set sizes. In histopathology for example, a patch size
is typically selected to capture a few dozen cells per patch. For MISO-1, we
arbitrarily chose a patch size of 96 ⇥ 96 pixels. For MISO-2, we chose a patch size
of 224 ⇥ 224 pixels, which is somewhat common for 10⇥ microscopy imagery.

Patch sampling strategy: This design choice surrounds the sampling of
constituent patches from the originating megapixel images. A popular choice to
maximize dataset size is to enforce a Cartesian grid and patch the image via a
sliding window [17,49]. Additionally, a 50% x- and y- shift can also be applied to
the starting position to capture objects on the patch borders of the original grid.
This study followed this two-part Cartesian grid sampling approach. Random
sampling is a popular option when many source images are available.

https://upload.wikimedia.org/wikipedia/en/0/0a/Gonzo_the_Great.jpg
https://upload.wikimedia.org/wikipedia/en/0/0a/Gonzo_the_Great.jpg
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https://upload.wikimedia.org/wikipedia/en/d/dd/Dr._Bunsen_Honeydew.jpg
https://upload.wikimedia.org/wikipedia/en/d/dd/Dr._Bunsen_Honeydew.jpg
https://i.etsystatic.com/16306234/r/il/94533b/2833342520/il_1140xN.2833342520_i7j8.jpg
https://i.etsystatic.com/16306234/r/il/94533b/2833342520/il_1140xN.2833342520_i7j8.jpg
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https://upload.wikimedia.org/wikipedia/en/5/59/Beaker_%28Muppet%29.jpg
https://upload.wikimedia.org/wikipedia/en/5/59/Beaker_%28Muppet%29.jpg
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Patch normalization: While channel-wise mean or median normalization has
been practiced for some time, new methods for domain-specific applications (e.g.,
multiplexed histopathology [41]) have helped to o↵er solutions that remove techni-
cal error in imaging. For the MISO-1 and MISO-2 datasets, we skip normalization
since all pixel values are defined between [0,1].

Patch filtering functions & rules: Depending on the prediction task and
the contents of the images where patches originate, a distinction can potentially
be made between the background and foreground of the image. This step is
typically employed in histopathology settings since specimens do not take up the
whole slide on which they are imaged. In this setting, background patches are
typically filtered out by some function or rule (e.g., intensity threshold [17]). If a
background-foreground distinction cannot be made, the whole image can simply
be used for patching. For the experiments conducted in this study, we performed
background-filtration (i.e., a filtering rule centered around patch pixel mean of
0.5 with tolerance of ±0.05) to maximize the level of supervision for our models.
This resulted in approximately 100K patches per scenario.

Patch dataset augmentation: Data augmentation via rotations and reflections
has become a popular strategy for increasing sample sizes in image domains
where rotational equivariance is assumed (e.g., histopathology, remote sensing,
cosmology). For simplicity and due to su�cient dataset size, we did not use
augmentation techniques.

Patch labeling functions & rules: Many of the current strategies are fuzzy
and can be conceptualized as the weak supervision attributed with fuzzy labeling
or data programming [83]. At the image-level, labels are often described as
coarse [85] — i.e., labels actually refer to specific aspects of images. Studies
today often take an ILI approach (see paper body) to patch labeling [17]. Pseudo-
labeling is also an active area of research [7]. Proxy-based labeling, as we call it,
is another approach that uses an informative channel and has garnered recent
attention [49]. We performed ILI patch labeling in this study due to its simplicity
and popularity.

Stage-1 Model Configurations

Patch data loading for mini-batch creation: Standard practice is to perform
randomized data loading into PatchCNN architectures, furthering the IID as-
sumption made by current popular models. We perform randomized data loading
with a mini-batch sizes of 36 patches for MISO-1 and 7 patches for MISO-2.

Patch-level classifier architecture & loss function: While there are many
CNN architectures that could operate as PatchCNNs, we chose two representative
architectures for experimentation: VGG-19 [96] and VGG with Attention (VGG-
Att) with pre-pooling Attention modules [51]. In tandem with ILI patch labeling
and randomized data loading, a popular patch-level loss function is the standard
binary cross-entropy loss [17]. We follow suit for our PatchCNNs.
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Training time: Number of epochs for training a model. We trained models for
10 epochs on MISO-1 and 20 epochs for MISO-2.

Stage-2 Model Configurations

Patch aggregation functions & rules for image-level classification:
There exist many possible approaches to perform image-level classification, rang-
ing from simple decision rules to trainable functions (with inputs as individual
patch predictions, prediction probabilities, hidden vectors, etc.) [17]. One popular
example of a decision rule is the Multiple Instance Learning (MIL) rule (i.e., max
pooling) operating on independent patch votes. The MIL rule has seen widespread
use in megapixel image classification [17, 108], often where the salient objects
indicative of class label are relatively small compared to the image size and thus
necessitate a highly sensitive classifier. For their simplicity, we also construct
six decision rules based on patch votes and probabilities: (1) top-20 majority
voting, or taking patches with the top-20 prediction probabilities and performing
a majority vote with a 0.5 threshold; (2) the MIL rule, or max-pool of the patch
predictions; (3) majority voting, or mean-pool with a 0.5 threshold; (4) weighted
majority voting, or the average expectation of patch votes and patch probabilities
with a 0.5 threshold; (5) caucus max-pooling, or iterative max-pooling using
10-by-10 blocks of patch predictions; and (6) caucus majority voting, or iterative
mean-pooling using 10-by-10 blocks of patch predictions with a 0.5 threshold.

Explanation Configurations

Explanation Mapping technique: Since patches are the unit of analysis for a
PatchCNN, we compute Explanation Maps at the patch-level. For their simplicity,
we compute Saliency Maps (for VGG-19 and VGG-Att) and Attention Maps (for
VGG-Att) per input patch at test-time.

Explanation Map post-processing: We take the average of the absolute
saliency and attention scores [3] for each patch in order to both speed up run-
time and eventually smooth out ROIs constructed from salient objects. Our
approach concatenates these scores to construct an array of scores per image
that we refer to as Stitched Saliency Maps (SSMs) and Stitched Attention Maps
(SAMs). Binarization of the SSMs or SAMs was also performed with the popular
adaptive threshold of double the mean saliency or attention score [13]. Finally, to
deal with spurious ROIs, studies have shown the utility of taking the Hadamard
product between predictions (i.e., PPMs) and binarized explanation maps (i.e.,
SSMs or SAMs) as a post-processing step [3]. We skipped this step to observe
unaltered explanations for MISO-1.

A.5 Interpretability Report Cards: Additional Tables

We present additional statistics for our analyses in Table 3, Table 4, and Table 5.
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Table 3: Patch- and image-level classification statistics generated on held-out test sets
per scenario. Patch-level statistics assume ILI labeling data as ground truth. Image-level
statistics reflect the maximum value over all six patch aggregation functions or decision
rules used. Only patches kept post-filtration were used to generate these statistics. A
boldface result indicates a superior score between architectures for a given scenario
(directionality denoted by ", #).

Patch-level (ILI labeling) Image-level

Scenario AUROC" AUPRC" AP" AUROC" AUPRC" AP"

VGG-19
EVP 1.000 1.000 1.000 1.000 1.000 1.000
DSP 0.500 0.750 0.500 0.500 0.750 0.500
MD 0.500 0.796 0.592 0.596 0.750 0.543

EVSP 0.500 0.750 0.500 0.501 0.750 0.501
GSP 0.500 0.750 0.500 0.500 0.750 0.500
FM 0.500 0.711 0.423 0.501 0.750 0.503

MISO-2 0.500 0.752 0.504 0.515 0.750 0.506
VGG-Att

EVP 1.000 1.000 1.000 1.000 1.000 1.000
DSP 1.000 1.000 1.000 1.000 1.000 1.000
MD 0.905 0.933 0.926 1.000 1.000 1.000

EVSP 1.000 1.000 1.000 1.000 1.000 1.000
GSP 0.520 0.539 0.538 1.000 1.000 1.000
FM 0.996 0.997 0.997 1.000 1.000 1.000

MISO-2 0.556 0.593 0.593 0.790 0.772 0.781
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Table 4: Additional PPM statistics and PCM statistics on held-out test sets per
scenario. Notably, the GSP scenario is omitted as was the case in Table 1 due to the
di�culty in assessing correctness given the ILI patch labeling regime. A boldface result
indicates a superior score between architectures for a given scenario (directionality
denoted by ", #). †Generated mean value required removal of a handful of test images to
avoid runtime or memory issues. |Denotes a binary map evaluation. �Denotes a non-
binary map evaluation. }Denotes a structural evaluation. ~Denotes an IID patch-level
evaluation.

PPMs PCMs

Scenario Dice (F1)
|~" Jaccard|~" Overlap|~" MAE�~# SSIM�}"

VGG-19
EVP 0.952 ± 0.012 0.914 ± 0.020 0.999 ± 0.000 0.235 ± 0.042 0.593 ± 0.062
DSP 0.499 ± 0.100 0.499 ± 0.100 0.500 ± 0.100 0.108 ± 0.010 0.585 ± 0.066
MD 0.499 ± 0.092 0.499 ± 0.092 0.500 ± 0.093 0.136 ± 0.010 0.625 ± 0.040

EVSP 0.363 ± 0.075 0.293 ± 0.063 0.498 ± 0.100 0.081 ± 0.016 0.639 ± 0.059
FM 0.451 ± 0.090 0.413 ± 0.083 0.500 ± 0.100 0.198 ± 0.027 0.572 ± 0.063

MISO-2 0.567† ± 0.170 0.554† ± 0.166 0.577† ± 0.173 0.223 ± 0.036 0.227 ± 0.074
VGG-Att

EVP 0.952 ± 0.012 0.914 ± 0.020 0.999 ± 0.000 0.235 ± 0.042 0.593 ± 0.062
DSP 0.949 ± 0.013 0.909 ± 0.021 0.999 ± 0.000 0.227 ± 0.029 0.677 ± 0.042
MD 0.719 ± 0.050 0.633 ± 0.063 0.732 ± 0.050 0.115 ± 0.006 0.674 ± 0.014

EVSP 0.861 ± 0.033 0.790 ± 0.047 0.998 ± 0.001 0.132 ± 0.017 0.676 ± 0.027
FM 0.942 ± 0.012 0.896 ± 0.020 0.998 ± 0.001 0.089 ± 0.010 0.811 ± 0.020

MISO-2 0.505† ± 0.093 0.387† ± 0.088 0.748† ± 0.088 0.248 ± 0.024 0.133 ± 0.045

Table 5: Additional SSM and SAM statistics on held-out test sets per scenario. A
boldface result indicates a superior score between architectures for a given scenario
(directionality denoted by ", #). *Indicates that SAMs yielded a top score for VGG-Att.
|Denotes a binary map evaluation. ~Denotes an IID patch-level evaluation.

Scenario Dice (F1)
|~" Jaccard|~" Overlap|~" MAE (binary)|~# Sensitivity|~" Specificity|~"

VGG-19
EVP 0.406 ± 0.098 0.327 ± 0.094 0.961 ± 0.012 0.348 ± 0.064 0.385 ± 0.117 0.981 ± 0.006
DSP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.413 ± 0.051 0.000 ± 0.000 1.000 ± 0.000
MD 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.394 ± 0.049 0.000 ± 0.000 1.000 ± 0.000

EVSP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.206 ± 0.043 0.000 ± 0.000 1.000 ± 0.000
GSP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.020 ± 0.004 0.000 ± 0.000 1.000 ± 0.000
FM 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.331 ± 0.058 0.000 ± 0.000 1.000 ± 0.000

MISO-2 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.660 ± 0.023 0.000 ± 0.000 1.000 ± 0.000
VGG-Att

EVP 0.525 ± 0.093 0.428 ± 0.092 0.974 ± 0.040 0.300 ± 0.063 0.471 ± 0.107 0.990 ± 0.006
DSP 0.528* ± 0.105 0.446* ± 0.099 0.930* ± 0.068 0.285* ± 0.066 0.493* ± 0.114 0.990* ± 0.005
MD 0.567* ± 0.092 0.476* ± 0.086 0.956* ± 0.015 0.259* ± 0.060 0.519* ± 0.096 0.988* ± 0.004

EVSP 0.710* ± 0.040 0.573 ± 0.071 0.999 ± 0.001 0.111* ± 0.025 0.877 ± 0.076 0.945* ± 0.013
GSP 0.357 ± 0.069 0.247 ± 0.056 0.694 ± 0.055 0.064 ± 0.018 0.620 ± 0.071 0.945 ± 0.020
FM 0.601* ± 0.051 0.453* ± 0.051 0.982* ± 0.012 0.215* ± 0.047 0.621* ± 0.089 0.971* ± 0.010

MISO-2 0.243* ± 0.056 0.144* ± 0.037 0.997 ± 0.004 0.569* ± 0.041 0.144* ± 0.037 0.999 ± 0.001
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A.6 Interpretability Report Cards: Illustrative Inputs

We also provide illustrative examples (i.e., local explanations) that corroborate
average test set performance results found in the presented tables. These examples
can be found below.

(a) VGG-19 (b) VGG-Att

Fig. 7: Example Report Cards for extreme-value pixels (EVP).

A.7 Limitations, Cautions, & Opportunity Areas

Limitations of this study pertain mostly to the simplicity in MISO-1’s dataset
properties, experimental protocol, and evaluation statistics. One such dataset
limitation is MISO-1’s and MISO-2’s usage of 1-channel images. These provided
datasets do not focus on testing di↵erentially expressed textures (at either local
or global scales) given its greater di�culty of generation and domain-specific
nature. Future work will explore this line of experimentation.

Regarding experimentation, all models trained on MISO-1 were trained for
10 epochs and all models trained on MISO-2 were trained for 20 epochs for
uniformity. Future work should implement early stopping and other practices
to ensure the most appropriate architecture selection. Future work should also
toggle various design configurations (Appendix A.4) to understand their e↵ects on
predictions and explanations — including the patch size hyperparameter, patch
filtering and labeling functions, and more sophisticated Explanation Mapping
techniques [84, 90]. To quantify spurious correlations, patch filtering can be
omitted for training and testing, and SSM and SAM Sensitivity (among other
statistics) can be computed.

Regarding Stage-1 architectures, simple baselines were chosen. Both equivari-
ance [25,48,73,104] and more sophisticated Attention-based architectures (e.g.,
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(a) VGG-19 (b) VGG-Att

Fig. 8: Example Report Cards for distribution-shifted pixels (DSP).

(a) VGG-19 (b) VGG-Att

Fig. 9: Example Report Cards for extreme-value superpixels (EVSP).



Datasets to Evaluate Megapixel Image Classifiers & Explanations 11

(a) VGG-19 (b) VGG-Att

Fig. 10: Example Report Cards for guilty superpixels (GSP).

(a) VGG-19 (b) VGG-Att

Fig. 11: Example Report Cards for fractal morphologies (FM).
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(a) VGG-19 (b) VGG-Att

Fig. 12: Example Report Cards for MISO-2.

ViTs, Hierarchical ViTs [71]) should be pursued. Furthermore, the community
should explore architectures and training regimes that soften the assumptions
made by two-stage modeling approaches. Recent works in Multi-task Auxiliary
Learning frameworks [66, 70] combine Stages 1 and 2 of the standard PatchCNN
pipeline and have been proposed for segmentation [35] and classification [102].
Additionally, recent works to encode patch locations contextualized embeddings
during supervision [6, 92, 114] show promise. Finally, Contrastive Learning ap-
proaches should be used to mitigate spurious correlations and increase specificity
of salient ROIs [120]. While all these approaches show promise, their explanations
have not been quantitatively evaluated via wsSOD and should be explored using
MISO-1 and MISO-2.

Regarding explanations, this study made large use of Saliency Mapping,
a standard gradient-based explanation method. State-of-the-art Explanation
Mapping methods [84, 91] should be explored as well to find optimal explanation
configurations. In particular, Class Activation Maps [91] specialize in identifying
di↵erentially expressed salient objects and should be explored further.

Regarding evaluation, despite having patch prediction probabilities structured
as PCMs, we were unable to generate average per-image classification statistics
(e.g., AUROC, AUPRC, and AP) due to ILI labeling and background filtration
resulting in patches that belong to a single class per image in most scenarios
(other than GSP). This study also highlights the need for new evaluation statis-
tics tailored to the modeling paradigms used for megapixel images. Due to the
common practice of background filtering via patch filtering functions (e.g., in
histopathology), standard statistics result in inflated scores across PPMs, PCMs,
SSMs, and SAMs. Specifically, statistics that score non-binary patches indepen-
dently (e.g., MAE) are not very discriminative in settings where majority of the
image is comprised of background pixels. Because of this, an over-reliance on
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these statistics need to be avoided and should instead drive the creation of new
statistics.

We also note the absence of some recently proposed evaluation methods
used in the field. Firstly, we plan to expand PCM evaluation by computing the
S-measure and continuous Dice coe�cients (cDCs) [93] against PPM ground
truths. Future work will also expand PPM, SSM, and SAM evaluation through
the use other structural similarity approaches used for masks [101,119] and in
more general image processing settings [27, 45].
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