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Abstract. Deep learning-based megapixel image classifiers have excep-
tional prediction performance in a number of domains, including clinical
pathology. However, extracting reliable, human-interpretable model expla-
nations has remained challenging. Because real-world megapixel images
often contain latent image features highly correlated with image labels, it
is di�cult to distinguish correct explanations from incorrect ones. Further-
ing this issue are the flawed assumptions and designs of today’s classifiers.
To investigate classification and explanation performance, we introduce a
framework to (a) generate synthetic control images that reflect common
properties of megapixel images and (b) evaluate average test-set correct-
ness. By benchmarking two commonplace Convolutional Neural Networks
(CNNs), we demonstrate how this interpretability evaluation framework
can inform architecture selection beyond classification performance — in
particular, we show that a simple Attention-based architecture identifies
salient objects in all seven scenarios, while a standard CNN fails to do
so in six scenarios. This work carries widespread applicability to any
megapixel imaging domain.

Keywords: eXplainable AI, Interpretable ML, Salient Object Detection,
model selection, synthetic data, coarse supervision, megapixel imagery

1 Introduction

Megapixel image datasets are increasingly common in multiple scientific and
human-centered application domains (e.g., histopathology [39,64], autonomous
systems [117], remote sensing and atmospheric sciences [24], and cosmology [79]),
but pose unique analytical challenges that are not present in standard image
datasets (i.e., those containing <106 pixels per image). Firstly, such datasets
contain images that are often described as either coarsely labeled, weakly labeled,
or weakly annotated data (WAD) [85], meaning that each image is only paired
with an image-level label and lacks sub-image annotations. The WAD characteri-
zation also implies su�ciently high resolution to contain semantically distinct
objects, or visual concepts [44], at multiple scales. However, such images are not
typically annotated due to costs and required domain expertise. Secondly, these
datasets typically have smaller sample sizes (of labeled images) than standard
image datasets. Thirdly, megapixel image datasets now include multiplexed or
multispectral images (i.e., with high channel-wise dimensionality) generated in
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scientific domains including histopathology [10,11,22,36,37,42,72,86,106,111].
Finally, due to the scarcity of these datasets and the diversity of their channel
spaces, the creation of pre-trained and foundation models [12] is uncertain. These
four unique challenges, coupled with memory constraints of today’s GPUs, have
necessitated new machine learning approaches for classifying and understanding
spatial systems imaged at high-resolution, megapixel scale.

While megapixel image classification has seen significant success with recent
deep learning approaches, model explanations are largely still unreliable and
uninterpretable. Recent studies have shifted classifiers toward end-to-end deep
learning from traditional machine learning of hand-crafted (i.e. hypothesis-driven
or keypoint-derived) featurization [39]. In particular, Patch-based Convolutional
Neural Networks (PatchCNNs) [43,54] have reached state-of-the-art performances
in domains such as cancer diagnostics and prognostics via histopathology [16, 17,
20,26,30,40,43,52,60,72,77,78,107] and remote sensing of geoeconomic indicators
via multispectral satellite imagery [49,113,115,121]. Despite modeling success
on deployment datasets — as commonly defined by classification performance
statistics, e.g., area under the Receiver Operating Characteristic (AUROC) and
area under the Precision-Recall Curve (AUPRC) — studies may report qualitative
and anecdotal assessment of model explanations or report a lack of interpretability
[17, 20, 52, 78]. To carry out this cursory assessment, Explanation Maps are
commonly used to identify input-specific salient objects and regions-of-interest
(ROIs) in test sets. However, Explanation Maps are rarely quantitatively assessed
for correctness due to a lack of ground truth pixel-level annotations in WAD
settings. Thus, challenging questions remain for megapixel image classifiers: Are
models learning and explaining truly salient, human-interpretable objects? Or are
those objects latent features or spurious correlations [120]? Are current modeling
choices [88] impeding human-interpretable explanations? Which choices lead to
enhanced interpretability? How should we assess interpretability? Conversely,
can model explanations reveal learning mechanisms and behaviors [68,81], and if
so, what mechanisms are desirable for megapixel imagery?

A growing focus on eXplainable Artificial Intelligence (XAI) and Interpretable
Machine Learning (IML) [28,29,67,68,75,82] in human-centered and scientific
application domains [4, 52, 105] has reframed interpretability as a priority for
model development and selection. Post-hoc model interpretability — or a model’s
ability to make human-interpretable, input-specific explanations — is desired for
decision-making but is often untenable due to discordance between optimized
model objectives (e.g., predictive performance) and the end user’s real-world
objectives (e.g., identifying salient ROIs) [68]. In order to quantify interpretability
as a form of explanation correctness, a classification-adjacent task has emerged:
weakly supervised Salient Object Detection (wsSOD). The wsSOD task can be
conceptualized as a form of image segmentation targeting salient objects used
for classification, but without annotated regions-of-interest (ROIs) as training
inputs [13, 23, 109]. While Salient Object Detection (SOD) is the goal task
evaluated via post-hoc Explanation Mapping, classification is the workhorse
task used to define the learning objective and evaluation scheme. Using neural
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networks’ in situ explanations, wsSOD presents an opportunity to both identify
and validate salient objects held as ground truth, as well as discover objects de
novo [30,33,44,109]. This opportunity is especially of interest in megapixel imagery
to better understand large-scale spatial systems. This interest is compounded
and even necessitated in multiplexed imagery (e.g., spatial proteomics [61])
since Explanation Maps scale in channel-space. Alas, the lack of ground truth
salient objects in such settings poses a roadblock to quantify interpretability and
motivates wsSOD-based architectural evaluation prior to deployment.

As wsSOD gains popularity in megapixel imagery, the computer vision com-
munity needs benchmarking datasets and a quantitative evaluation framework
for assessing classifiers and their explanations. To address this need, we present
MISO, a novel dataset generator that creates Megapixel Images with Salient
Objects for the wsSOD task. MISO creates synthetic control images with di↵er-
entially expressed, class-specific properties and predefined ground truths to assess
classification and wsSOD. We developed MISO and its derivative datasets to
help understand the impact of modeling assumptions and design configurations
(architectures, hyperparameters, etc.) [88] on these tasks, perform architecture
selection, and coax out learning mechanisms. Finally, we demonstrate architecture
selection through head-to-head comparisons between commonplace architectures
and explanation methods. In summary, our contributions are as follows:
– A unifying and generalized framework for designing PatchCNNs, a popular

approach to megapixel image classification
– MISO, a dataset generator and framework for creating synthetic megapixel

images with multiple training and testing scenarios that simulate common
properties of such datasets

– MISO-1, a benchmark dataset of synthetic controls generated by MISO
– MISO-2, a benchmark dataset derived from real-world histopathology data
– Interpretability Report Cards, a quantitative framework for measuring the

average input-specific correctness of predictions and explanations

Fig. 1: Overview of the MISO generator and benchmarking datasets, MISO-1 and
MISO-2. MISO-1 and MISO-2 alike evaluate models’ abilities to detect salient objects
and ROIs. Scenarios (a)-(f) of MISO-1 test models’ abilities to detect di↵erentially
expressed properties and are trained and tested on separately. MISO-2 combines tested
properties of MISO-1 to o↵er a more challenging wsSOD task.
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2 Related Work

2.1 Modern Megapixel Image Classifiers

Megapixel image classification has shifted toward deep learning-based approaches,
driven by a well-posed data assumption. Implicit in the WAD characterization of
megapixel images is the assumption of di↵erentially expressed image features,
often formulated as the Multiple Instance (MI ) assumption [5, 18, 53, 63, 122]:
that is, there exists at least one class-specific instance (i.e., �1 pixels) within
a class-1 image that corresponds with the class-1 image-level label. Inversely, a
class-0 image reflects the absence of such instances. These “guilty” instances (i.e.,
salient objects) are not known a priori, but the MI assumption can be encoded
into a classifier’s design [17, 46, 72, 113]. This intuitively shifts the traditional
classification task toward object detection and segmentation, albeit without
ground truth ROI annotations (e.g., bounding boxes). This assumption arises
frequently in clinical settings: pathologists search for instances of cancer cells
in healthy tissue (to determine cancer diagnosis and stage) and for anaplastic
cancer cell morphology in tumor tissue (to determine tumor grade) [52, 76].

In accordance with the MI assumption and a push to scalably process
megapixel images as inputs to neural networks, classifiers have shifted the unit
of analysis toward small sub-image croppings of source images. These croppings,
often referred to as patches (as depicted in Fig. 2), sample source images and
o↵er a granular, frequentist view of their heterogeneity with predictive utility
in various settings [6, 50,60]. With patches as inputs, popular models of today
often take a disjoint two-stage, Transfer Learning approach to image classifi-
cation: (1) patch-level predictions through the use of a Convolutional Neural
Network (CNN) followed by (2) patch aggregation and image-level prediction.
The family of models in Stage-1 is sometimes referred to as a Patch-based CNN
or PatchCNN [43, 54] and can include Attention modules [48, 58, 94, 103] as seen
in recent architectures [46,51,72]. The implementation of Stage-2 has spanned
a variety of models, ranging from simple decision rules to more sophisticated
functions trained on any combinations of hidden vector representations, indepen-
dent patch-level predictions, and the spatial arrangement of patch predictions
(i.e., a Patch Prediction Map, or PPM ) and their probabilities [17, 40] (i.e., a
Patch Confidence Map, or PCM ). In summary, this two-stage strategy (Fig. 2)
and its input patches are used for interconnected reasons: to operate under the
memory constraints of GPUs, to significantly amplify the labeled dataset size
while preserving image richness, and to perform fine-grained analyses.

However, PatchCNNs in their simplest forms make multiple inherently flawed
modeling assumptions. Firstly, (I) patches are assumed and treated as statistically
independent and identically distributed (IID), making image-level classification
a combination of independent patch predictions. This is inherently false due to
spatial autocorrelation between neighboring patches. Based on patch size, features
captured may only represent local contextual information [13]. Secondly, because
of the aforementioned WAD constraint and MI assumption, (II) patch labeling is
often conducted via image-level label inheritance (ILI). ILI is a labeling strategy
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that labels all constituent patches of an image with their associated image-level
label. Despite ILI being a noisy extension of the MI assumption through its “guilt
by association” clause, this coarse supervision strategy has shown surprising
classification success in the histopathology application domain [17,43]. Thirdly,
as discussed, (III) PatchCNNs usually appear in decoupled, two-stage modeling
pipelines. Thus, image-level predictions are not part of the PatchCNN learning
objective when training on patches, meaning image-level features are not learned
when constructing patch-level representations. This design implies (and enforces)
that any learned salient objects are self-contained within IID patches. Despite
operating on at least one of these limiting modeling assumptions, PatchCNN
applications in patient prognostics via histopathology have achieved state-of-the-
art classification performances with at AUROCs approaching 1.0 [17,40,43,77,107].
However, while qualitative analyses have been conducted for salient objects in
situ [89], few examples quantitatively evaluate them [98] or objectively assess
architectural or model interpretability.

Fig. 2: Generalized schematic of the PatchCNN pipeline. Stage-1 operates on patches
independently while Stage-2 operates on all patches per image.

2.2 Explanation Maps & Salient Object Detection

Current explanation methods for neural network classifiers are predominantly post-
hoc and input-specific (i.e., local) [2, 28, 82], lending themselves to anecdotal and
qualitative interpretations. These explanations often take the form of Explanation
Maps (e.g., Saliency Maps [62,95,100], Class Activation Maps [91], and Visual
Attention Maps [51]). However, neural networks often fail to provide reliable
and human-interpretable explanations through Explanation Mapping [57]. This
discordance has been quantitatively studied in standard image domains (e.g.,
applications in clinical decision support [8]), but is largely missing for megapixel
image domains to our knowledge. Studies often omit large-scale assessment of
model explanations and instead typically show meaningful ROIs for cherry-
picked examples. Ultimately, quantifying explanation correctness is required to
quantify a model’s post-hoc interpretability — and is currently unobtainable
without human-derived ground truth salient objects. Due to expensive annotation
costs beyond image-level labels, wsSOD is an important task due to its wide
applicability in assessing model explanations [108,109]. Conventional SOD, much
like conventional classification approaches, uses hypothesis-driven, hand-crafted
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featurizers or keypoint detectors [1, 9] to extract domain-specific image features
(e.g., intensity, color, texture) and identify salient objects. In contrast, deep
learning-based wsSOD is often driven by an end-to-end classification task followed
by Explanation Mapping to identify salient objects or ROIs [38, 108].

2.3 Benchmarks for Salient Object Detection

While datasets for SOD (and wsSOD) exist for standard image domains, they
do not exist for megapixel image domains to our knowledge. Current SOD
datasets span a wide range of scenarios — simpler scenarios can contain a few
objects overlaid on a solid background, while more complicated scenarios contain
multiple objects with varying backgrounds [109]. While these datasets all have
ground truths for salient regions (e.g., pixel-wise annotated masks, bounding
boxes, human eye fixation locations, etc.), they usually lack class structure and
thereby any di↵erentially expressed, class-specific objects for (weakly) supervised
learning. Additionally, to our knowledge, no SOD datasets contain megapixel
images and thus do not contain any data-relevant properties encountered in
real-world datasets (Sec. 3.1). On the other hand, there exist very few real-world
megapixel image datasets that have ground truth annotations to compare against
any detected salient objects. Typically used for tasks such as ROI segmentation
and classification (e.g., in histopathology [69]), such datasets only test models’
abilities to identify true positive expert annotations as defined by limited a priori
domain knowledge (albeit often with low inter-rater reliability [87, 97]), but fail
to test detected false negatives beyond its scope. Realistic data synthesized from
generative models can fall short for similar reasons — defining ground truth
salient objects is di�cult to condition on, define, and verify, and (ii) even if
successful, such salient objects will still only ever reflect domain knowledge. In
reality, many real-world scientific settings will likely never have truly exhaustive
annotations for ground truth salience. Finally, to our knowledge, there exists
no dataset and evaluation framework to systematically evaluate a patch-based
model’s textural (i.e., pixel-value heterogeneity), morphological (i.e., edge shape
between foreground and background), and contextual awareness (i.e., patch
co-localization) at patch and image scales.

3 Proposed Benchmarking Datasets

3.1 Data-Relevant Properties for Megapixel Imagery

Megapixel images often contain di↵erentially expressed properties that classifiers
should be attuned to. One property is di↵erential (A) pixel values, where pixel
intensities can be indicative of class membership. An analogy from histopathology
includes channel expression indicative of a phenotype (e.g., benign versus malig-
nant tumor tissue [74]). Additionally, (B) local abnormalities in intensity, texture,
and morphology can exist, or relatively small objects found within larger ones
(i.e., MI assumption). An illustrative example from histopathology includes cancer
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cells in healthy tissue [59]. Another property we may see is di↵erential (C) large-
scale morphologies, i.e., patterning and di↵erent edge shapes. In histopathology,
this can be exemplified by invasive cancer cells altering the stromal patterning
in tissue [55]. Finally, the global texture or degree of (D) object clustering (i.e.,
the size, number, and density of objects) can di↵er between classes. This is
demonstrated by the tightly packed organization of cells in healthy tissue versus
cellular anaplasticity in high-grade tumors (e.g., Gleason grade [99]).

3.2 MISO Dataset Generator & MISO-1 Benchmark

We present MISO to o↵er a principled approach to systematically evaluate
megapixel image classifiers and their explanations. MISO is a dataset generator
and generalizable framework for creating synthetic grayscale control images.
Generated using standard techniques in image processing (Appendix A.3), images
are partitioned into six datasets, i.e. scenarios, that each simulate one or more
di↵erentially expressed data properties (A)-(D) between classes. While trivial to
classify at the image-level, a scenario’s images may pose di�culty in determining
class membership at the patch-level. Each scenario is intended to be trained
and tested on individually. We also present MISO-1, a benchmarking dataset
generated by MISO for the wsSOD task (Fig. 1, Fig. 3). Each of MISO-1’s six
scenarios contain n ⇡ 100 weakly annotated megapixel images for each of the
training and test sets (Fig. 3). Dataset specifications are outlined in Appendix A.3.
Because we define ground truth salient objects in the creation of MISO-1, we
can test models’ capabilities to identify all di↵erentially expressed salient objects
— a necessity for selecting interpretable models when ground truth annotations
are unavailable or non-exhaustive. Regardless of scale, Scenarios (a), (b), and (d)
test awareness of pixel value, while (c), (e), and (f) test awareness of morphology:

(a) Extreme-value pixels (EVP): This scenario tests data property (A).
Images in this scenario contain 0- or 1-valued objects of varying large-scale
morphologies for their respective 0-class and 1-class images. Since image
textures are relatively smooth (with “salt or peppered” fuzziness in some
cases), this scenario tests a patch-based model’s ability to map patches to
classes via their pixel values alone, regardless of what parts of the image’s
objects are contained within the patches.

(b) Distribution-shifted pixels (DSP): This scenario also tests data property
(A), albeit with increased di�culty than the EVP scenario. Images in this sce-
nario contain objects with pixel values that are sampled from non-overlapping
class distributions. More concretely, there exist varying large-scale morpholo-
gies with pixels ranging from [0.6,1] for 1-class images and [0,0.4] for 0-class
images. Similar to the EVP scenario, this scenario tests a patch-based model’s
ability to map patches to classes by pixel values alone.

(c) Morphological di↵erences (MD): This scenario tests data property (C).
Images in class-0 have a shared large-scale morphology (Fig. 3). Images in
class-1 take on all other large-scale morphologies derived from the other 23
input bitmaps. Because data property (A) is tested by both EVP and DSP
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scenarios, MD has 1-valued objects for both classes. This scenario tests a
patch-based model’s contextual and morphological awareness.

(d) Extreme-value superpixels (EVSP): This scenario tests data property
(A) like the EVP scenario, but with added di�culty — this scenario simulates
settings with varying large-scale morphologies comprised of many small
objects. To achieve this, we took coordinates from in-house cell segmentation
data (masks provided with MISO-1) and overlaid 0- and 1-valued circles
(of radius 10 pixels) within our large-scale morphologies for 0- and 1-class
images, respectively. This scenario also tests a patch-based model’s ability to
map patch pixel values to classes.

(e) Guilty superpixels (GSP): This scenario tests data property (B). Class-0
images contain 1-valued objects with varying large-scale morphologies and
class-1 images contain those objects but with randomly placed 0-valued circles
of (randomly selected) radii between [100,300] pixels within them. This tests
a patch-based model’s textural and contextual awareness.

(f) Fractal morphologies (FM): This scenario tests data property (D). Class-0
images contain 1-valued objects of varying large-scale morphologies, while
class-1 images contain mosaics of those same objects but shrunken, repeatedly
tiled, and mapped within their original morphology boundaries. This approach
creates su�cient class balance between class-0 and class-1 patches. This tests
a patch-based model’s textural, morphological, and contextual awareness.

Fig. 3: MISO-1 example images for three reference masks. MISO-2 example images.

3.3 MISO-2 Benchmark

To evaluate PatchCNNs in a more realistic setting, we also present MISO-2, a
binary image dataset derived from histopathology data. This dataset includes
morphologically heterogeneous superpixels in the form of segmented cell masks
from n = 184 images. The masks span two histologic types of lung cancer,
defining our class structure for image-level labels: 92 adenocarcinoma samples
as class-0 and 92 squamous cell carcinoma samples as class-1. Histologic type
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is used as a label for its ability to describe superpixel patterns represented
throughout MISO-2’s images. Cell morphology heterogeneity arises from both
intra-sample heterogeneity (via multiple cell types, i.e., stromal and cancer cells)
and inter-sample heterogeneity (via histologic type). We split the data using an
80-20 split, resulting in 148 training images and 36 test images. This benchmark
simultaneously tests data properties (B)-(D).

4 Experiments & Results

4.1 Baseline Methods & Evaluable Outputs

To establish baseline classifiers for MISO-1 and MISO-2, we chose two common-
place PatchCNN architectures to perform the wsSOD task. We used VGG-19 [96]
and VGG with Attention (VGG-Att) with pre-pooled modules [51] with shared
patch sizes (96 ⇥ 96 pixels for MISO-1 and 224 ⇥ 224 pixels for MISO-2) and
background filtration. Both architectures were trained (over 10 epochs for MISO-1
and 20 epochs for MISO-2) and tested on all scenarios separately, resulting in
fourteen evaluable models. Both architectures output PPMs and PCMs, which
spatially contextualize patch predictions and prediction probabilities per image.
For explanations, we also chose standard baseline methods: Saliency and Atten-
tion Maps. VGG-19 can compute Saliency Maps per patch, while VGG-Att can
compute both Saliency and Attention Maps per patch. To speed up run-time
and smooth out ROIs, we averaged absolute saliency or attention scores [3] per
patch. We then concatenated scores to construct an array per image that we
refer to as Stitched Saliency Maps (SSMs) and Stitched Attention Maps (SAMs).
Binarization of the SSMs and SAMs was performed with the popular adaptive
threshold of double the mean saliency or attention score [13]. All other design
configurations (e.g., hyperparameters) for preprocessing, modeling, and explana-
tions are shared between architectures. Refer to Appendix A.4 for a summary of
configurations that define benchmarks for architecture selection.

4.2 Evaluation Framework: Interpretability Report Cards

Because ground truths are defined by the control images in MISO-1 and MISO-2,
quantitative evaluation includes the correctness of spatially resolved predictions
and explanations. To evaluate both model predictions and explanations, we
use performance statistics from classification, image segmentation, and saliency
analysis [13,38,65,109,116] to score outputs against ground truths (Fig. 1). Three
types of analyses are conducted in this section: (i) independent patch predictions
(of their constituent image’s class) over the whole patch dataset and the resulting
image-level predictions based on decision rules; (ii) PPMs and PCMs to assess
the correctness of predictions and prediction probabilities in space; and (iii) SSMs
and SAMs to assess wsSOD capabilities, i.e., correctness of explanations. We
define correctness using the notion of explanation plausibility, i.e., the quality of
alignment between model explanations and human interpretations [47], and use it
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as our proxy for interpretability. Thus, we compute similarity scores between an
explanation and its corresponding ground truth salient objects. We do not assess
explanation faithfulness, i.e., how accurately an explanation reflects a model’s
true reasoning process [47], due to its relative di�culty to evaluate quantitatively.
To summarize evaluation, we provide Interpretability Report Cards per model
and per scenario, which consist of average statistics and confidence intervals
over test set images and visualizations of example predictions and explanations
(Fig. 4, Appendix A.6). Specifically for Explanation Mapping, this strategy moves
toward a global measure of post-hoc model interpretability through the aggregate
evaluation of local, or input-specific, explanations. It should be noted that the
following statistics are all inflated by background patch filtration, a commonly
performed preprocessing step in several application domains.

Classification Performance Statistics: For independent patch predictions,
ground truth annotations are derived from ILI labeling. Patch-level AUROC,
AUPRC, and Average Precision (AP) are computed over all IID-assumed patches,
thus reflecting class membership prediction of individual patches. Image-level
AUROC, AUPRC, and AP are also computed over all image-level labels using
patch aggregation functions (i.e., image-level decision rules described in Ap-
pendix A.4). Image-level prediction probabilities are generated with each decision
rule’s pooling strategy. Results are found in Appendix A.5 Table 3.

Patch Prediction & Confidence Maps: Ground truth annotations for PCMs
are derived from patch means, while ground truth annotations for PPMs are
derived from patch means and an applied manual binarization threshold specific
to image label and scenario (Fig. 1). To assess PPMs on an IID patch-level,
we calculate set-theoretic statistics including F�-measure (with �2 = 0.3 [13]),
Dice (i.e., F1-measure), Jaccard, and Overlap coe�cients, as well as Sensitivity,
Specificity, and Mean Absolute Error (MAE). To assess PPMs structurally, we
use the E-measure [32] and also introduce a new metric called the Scagnostics
Distance (ScagDist). ScagDist simply featurizes binary masks by their topological
properties using techniques from computational geometry and graph theory [112]
and takes the cosine distance between them. It should be noted that we tallied
default ScagDist values of 1.0 for blank SSM or SAM outputs. We assess PCMs
on a patch-level via the MAE and structurally via the Structural Similarity Index
Measure (SSIM) [110]. Results are shown in Table 1 (and Appendix A.5 Tab. 4).
It should be noted that PPMs and PCMs were not evaluated for the GSP scenario
due to the di�culty in defining a single notion of correctness for ground truths,
given the ILI labeling scheme used for training (Appendix A.6 Fig. 10).

Stitched Saliency & Attention Maps: Due to the di↵erentially expressed
nature of the image properties in MISO-1 and MISO-2, ground truth annotations
for SSMs and SAMs (salient ROIs) are conveniently the same as those constructed
for PPMs (patch labels) — they are derived from patch means and an applied
manual binarization threshold specific to image labels and scenarios (Fig. 1,
Appendix A.3 Fig. 6). For ease, we only assess class-1 test images. To assess
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Table 1: Average statistics over test-set PPMs. A boldface result indicates a supe-
rior score between architectures for a given scenario (directionality denoted by ", #).
†Generated mean value required image sampling to avoid runtime or memory issues.
|Denotes binary map evaluation. }Denotes structural evaluation. ~Denotes IID patch-
level evaluation.
Scenario Sensitivity|~" Specificity|~" ScagDist|}# F�-measure|~" E-measure|}" MAE|~#

VGG-19
EVP 0.999 ± 0.000 0.926 ± 0.016 0.011 ± 0.006 0.931 ± 0.016 0.952 ± 0.005 0.038 ± 0.008
DSP 0.500 ± 0.100 0.929 ± 0.016 0.138 ± 0.035 0.499 ± 0.100 0.666 ± 0.036 0.246 ± 0.056
MD 0.500 ± 0.093 0.938 ± 0.011 0.004 ± 0.001 0.499 ± 0.092 0.837 ± 0.015 0.137 ± 0.025

EVSP 0.498 ± 0.100 0.923 ± 0.019 0.535 ± 0.094 0.321 ± 0.068 0.514 ± 0.028 0.160 ± 0.024
FM 0.500 ± 0.100 0.923 ± 0.018 0.508 ± 0.099 0.429 ± 0.086 0.575 ± 0.033 0.205 ± 0.039

MISO-2 0.557† ± 0.167 0.890† ± 0.040 0.171† ± 0.094 0.572† ± 0.171 0.628† ± 0.072 0.323† ± 0.121
VGG-Att

EVP 0.999 ± 0.000 0.926 ± 0.016 0.011 ± 0.006 0.931 ± 0.016 0.952 ± 0.005 0.038 ± 0.008
DSP 0.999 ± 0.000 0.928 ± 0.016 0.013† ± 0.006 0.927 ± 0.018 0.951 ± 0.005 0.038 ± 0.008
MD 0.721 ± 0.048 0.938 ± 0.011 0.008† ± 0.001 0.719 ± 0.051 0.908 ± 0.008 0.099 ± 0.017

EVSP 0.998 ± 0.001 0.923 ± 0.019 0.035 ± 0.012 0.819 ± 0.041 0.888 ± 0.013 0.057 ± 0.013
FM 0.986 ± 0.009 0.922 ± 0.017 0.009 ± 0.004 0.924 ± 0.016 0.944 ± 0.006 0.045 ± 0.009

MISO-2 0.400† ± 0.086 0.865† ± 0.040 0.317† ± 0.071 0.601† ± 0.095 0.461† ± 0.040 0.437† ± 0.068

binarized SSMs and SAMs on an IID patch-level, we again calculate set similarity
coe�cients as described in the previous subsection. To assess binarized maps
structurally, we again use the E-measure and ScagDist. We use MAE to assess
non-binarized maps on a patch-level. Finally, to assess non-binarized maps
structurally, we use the S-measure [31] and SSIM. Results are shown in Table 2
(and Appendix A.5 Tab. 5). Testing every patch explanation against its patch-
level ground truth helps measure image-level awareness of di↵erential expression.

4.3 Analysis of Results

Are models learning and explaining truly salient, human-interpretable objects?
Yes, our wsSOD experiments suggest that a subset of models are able to do so
despite the aforementioned flawed modeling assumptions. However, our experi-
ments highlight divergent patterns of classification and explanation performance
over a number of evaluation statistics. Are current modeling choices impeding
human-interpretable explanations? Which choices lead to enhanced interpretabil-
ity? For MISO-1, while both architectures perform fairly well with patch- and
image-level class predictions (Tab. 1, Appendix A.5 Tab. 3 and Tab. 4), VGG-Att
still generally outperforms VGG-19 in both generating accurate class predictions
and human-interpretable explanations. VGG-Att’s relatively high performance
is increasingly clear as the scenarios become intuitively more challenging —
regarding PPM correctness in Table 1, VGG-19 has low sensitivity (near 0.5)
for all scenarios other than EVP, thus pointing to an average of near-random
classification of foreground patches per image. Regarding SSM and SAM correct-
ness (Tab. 2), VGG-19 often failed to identify any salient objects in scenarios
other than EVP. Results from MISO-2 show us that while VGG-19, on average,
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Table 2: Average statistics over test set Explanation Maps. Stitched Saliency Maps
(SSMs) are constructed for both models, while Stitched Attention Maps (SAMs) are
also constructed for VGG-Att. A boldface result indicates a superior score between
architectures for a given scenario (directionality denoted by ", #). *Indicates that SAMs
yielded a top score for VGG-Att. †Generated mean value required image sampling to
avoid runtime or memory issues. |Denotes binary map evaluation. �Denotes non-binary
map evaluation. }Denotes structural evaluation. ~Denotes IID patch-level evaluation.

Scenario MAE�~# F�-measure |~" ScagDist|}# S-measure�}" E-measure|}" SSIM�}"

VGG-19
EVP 0.427 ± 0.050 0.475 ± 0.082 0.214 ± 0.047 0.289 ± 0.025 0.503 ± 0.044 0.270 ± 0.063
DSP 0.413 ± 0.051 0.000 ± 0.000 1.000 ± 0.000 0.293 ± 0.026 0.250 ± 0.000 0.280 ± 0.064
MD 0.394 ± 0.049 0.000 ± 0.000 1.000 ± 0.000 0.303 ± 0.025 0.250 ± 0.000 0.279 ± 0.055

EVSP 0.206 ± 0.043 0.000 ± 0.000 1.000 ± 0.000 0.397 ± 0.022 0.250 ± 0.000 0.384 ± 0.066
GSP 0.020 ± 0.004 0.000 ± 0.000 1.000† ± 0.000 0.529 ± 0.021 0.250 ± 0.000 0.913 ± 0.014
FM 0.331 ± 0.058 0.000 ± 0.000 1.000 ± 0.000 0.335 ± 0.029 0.250 ± 0.000 0.314 ± 0.071

MISO-2 0.660 ± 0.023 0.000 ± 0.000 1.000 ± 0.000 0.170 ± 0.012 0.250 ± 0.000 0.001 ± 0.001
VGG-Att

EVP 0.430 ± 0.050 0.609 ± 0.083 0.179 ± 0.056 0.285 ± 0.025 0.581 ± 0.043 0.265 ± 0.063
DSP 0.412 ± 0.051 0.585* ± 0.098 0.170*† ± 0.068 0.541* ± 0.016 0.610* ± 0.045 0.412* ± 0.054
MD 0.391 ± 0.049 0.627 ± 0.030 0.135*† ± 0.045 0.306 ± 0.025 0.657* ± 0.042 0.282 ± 0.055

EVSP 0.205 ± 0.043 0.691* ± 0.047 0.076* ± 0.028 0.446* ± 0.013 0.781* ± 0.021 0.435* ± 0.053
GSP 0.020 ± 0.004 0.350 ± 0.072 0.266† ± 0.044 0.490 ± 0.002 0.656 ± 0.040 0.913 ± 0.014
FM 0.313 ± 0.055 0.664* ± 0.046 0.051* ± 0.014 0.363 ± 0.026 0.645* ± 0.031 0.339 ± 0.068

MISO-2 0.660 ± 0.023 0.390* ± 0.078 0.398† ± 0.046 0.170 ± 0.012 0.258* ± 0.015 0.002 ± 0.001

tends to make more correct class predictions than VGG-Att (Tab. 1), VGG-Att
is far superior at identifying salient objects on average (Tab. 2). Are some salient
objects simply latent features or spurious correlations? Regarding latent features,
VGG-19 is learning highly predictive patch representations almost all scenarios
Tab. 1, but systemically struggles to create interpretable explanations. This
discrepancy points to the architecture’s potential reliance on latent features.
Unfortunately, we are limited in our ability to characterize spurious correlations
from this work alone. For simplicity and to probe high-supervision performance
on MISO-1 and MISO-2, we conducted complete patch filtering of image back-
grounds. This choice thereby limits any learning of spurious correlations and
subsequently constrained learning and evaluation to foreground objects.

Can model explanations reveal learning mechanisms and behaviors? What
mechanisms are desirable for megapixel imagery? While model explanations on
synthetic datasets do not directly reveal learning mechanisms, they can shed light
on resulting emergent behaviors and capabilities that certain architectures a↵ord
us. Firstly, VGG-Att seems to have a stronger ability to learn ranges of pixel
values between classes and to identify relatively small salient morphologies, respec-
tively supported by DSP and FM scenarios (e.g., near-doubled PPM sensitivity
and F�-measure in Tab. 1). Additionally, while VGG-Att has lower patch-level
classification performance scores for GSP (Appendix A.5 Tab. 3), the scores
actually reflect the model’s ability to work beyond the confines of fuzzy (i.e., ILI)
patch labeling and classify “guilty” regions as the sole class-1 patches. VGG-Att’s
under-reliance on fuzzy patch labeling is also apparent in its explanations. Curi-



Datasets to Evaluate Megapixel Image Classifiers & Explanations 13

(a) VGG-19 (b) VGG-Att

Fig. 4: Example Report Card for morphological di↵erences (MD). Test-set examples,
PPMs, PCMs, and SSMs (and SAMs if applicable) are displayed in rows 1-4, respectively.

ously, it identified salient “guilty” ROIs in larger morphologies (Appendix A.6
Fig. 10, Tab. 2 ScagDist and E-measure) despite flawed modeling assumptions:
despite only having access to IID-assumed patches and ILI labels, solely comput-
ing Attention scores within each patch, and without any form of global Attention
across patches. This finding hints at superior contextual awareness, such as ca-
pabilities for Gestalt Closure [56] and foreground-background edge detection.
VGG-Att’s heightened edge detection is supported by properly modulated patch
prediction probabilities in the MD scenario’s PCMs (Fig. 4b, Tab. 4) — by
assigning lower prediction probabilities to interior foreground patches, it ap-
pears to use edges as the primary discernment between large-scale morphologies.
Interestingly, MISO-2’s explanation results (Tab. 2) could point to VGG-19’s
heightened global textural awareness (a potential bias for CNNs [34]), despite
overall lower SSM performance than VGG-Att (Tab. 1). The relative complexity
of MISO-2 as a dataset may point to VGG-Att’s limited bias toward textures, but
could also reflect the need for increased training iterations or sample size. Even so,
VGG-Att’s dominance in interpretability points to its ability to construct repre-
sentations without solely relying on latent features. VGG-Att’s overall modeling
capabilities are most likely granted by its model-intrinsic explanations [29], but
don’t necessarily imply greater utility of SAMs over SSMs — both were generally
accurate, but also excelled in di↵erent scenarios (e.g., SSMs outperformed SAMs
in all statistics in the EVP scenario). These findings reiterate Attention-based
models’ (e.g., Vision Transformers) starkly di↵erent learning mechanisms for
visual recognition than traditional CNNs, their fine-grained attentiveness, and
their subsequent human-interpretability in standard image domains [14,19,21,80].

How should we assess interpretability? To quantify and assess interpretability,
we recommend measuring explanation plausibility. Specifically for megapixel
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imagery, classifiers should be assessed via wsSOD to investigate their abilities to
explain predictions with long-range dependencies. Even though our evaluation
framework only tests plausibility, it allows us to interrogate model behaviors,
hypothesize learning mechanisms, and even su�ciently di↵erentiate between
two comparable, but architecturally distinct baselines. Because this form of
analysis requires complete salient object annotations, synthetic controls (with
di↵erentially expressed properties) provides automated evaluation in deployment
settings where exhaustive annotations are infeasible or impossible. Furthermore,
because predictive performance and explanation plausibility are not necessarily
correlated, we support similar frameworks for architectural (i.e., model family)
evaluation, benchmarking, debugging and testing workflows [118], and selection
prior to model deployment. In order to push models toward XAI and IML, we
must promote interpretability as a quantifiable criterion in the design process to
ultimately build inherently interpretable architectures and trained models.

While MISO-1 lacks realism, its scenarios independently and systematically
test megapixel imagery’s common properties to reveal architectural behaviors.
Even with MISO-2’s real-world origins and combined elements of MISO-1 sce-
narios (i.e., MD, GSP, FM), VGG-19’s low-plausibility explanations for MISO-1
recur for MISO-2 (Tab. 2). While this consistency hints at generalized behavior,
generalizability should be assessed further in settings with greater data com-
plexity (as discussed in Limitations section Appendix A.7). For these reasons,
we recommend that MISO-1, MISO-2, and any other custom MISO-generated
datasets be used in tandem with domain-specific segmentation datasets (i.e.,
where annotated ROIs are withheld during training and evaluated against). This
multi-pronged strategy can respectively test (A) a model’s full set of plausible
explanations in settings without exhaustive ground truths and (B) true positive
salient objects in real-world environments. We believe the proposed benchmarks
can act as a community resource similar to MNIST [15], but customized for
megapixel imagery and assessing interpretability. These datasets act as debugging
sanity checks that any interpretable model should be able to pass — especially
before deployment in low-annotation settings.

5 Conclusion

In summary, our primary goals are to both provide synthetic datasets that reflect
one or more common, di↵erentially expressed data properties, as well as system-
atically probe the interpretability of megapixel image classifiers. We show the
utility of this approach for evaluating classifiers and their explanation plausibility
via their propensities to perform wsSOD. Through experimentation, we also put
commonplace PatchCNN architectures into question. While current modeling
paradigms lack interpretability, extensions toward context-aware, Attention-based
architectures have great potential as salient object detectors aligned with human
interpretation. This work has widespread applicability for megapixel image and
application domains, and can even provide an groundwork for interpretability
evaluation in standard image domains.
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33. Frintrop, S., Garćıa, G.M., Cremers, A.B.: A cognitive approach for object discovery.
In: 2014 22nd International Conference on Pattern Recognition. pp. 2329–2334
(Aug 2014) 3

34. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel,
W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. arXiv (Nov 2018) 13

35. Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I.W.M., Sanchez, C.I.,
Litjens, G., de Leeuw, F.E., van Ginneken, B., Marchiori, E., Platel, B.: Location
sensitive deep convolutional neural networks for segmentation of white matter
hyperintensities. Sci. Rep. 7(1), 5110 (Jul 2017) 12

36. Giesen, C., Wang, H.A.O., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B.,
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