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Abstract. Face recognition (FR) has witnessed remarkable progress
with the surge of deep learning. Current FR evaluation protocols usu-
ally adopt different thresholds to calculate the True Accept Rate (TAR)
under a pre-defined False Accept Rate (FAR) for different datasets. How-
ever, in practice, when the FR model is deployed on industry systems
(e.g., hardware devices), only one fixed threshold is adopted for all sce-
narios to distinguish whether a face image pair belongs to the same iden-
tity. Therefore, current evaluation protocols using different thresholds
for different datasets are not fully compatible with the practical eval-
uation scenarios with one fixed threshold, and it is critical to measure
the performance of FR models by using one threshold for all datasets.
In this paper, we rethink the limitations of existing evaluation protocols
for FR and propose to evaluate the performance of FR models from a
new perspective. Specifically, in our OneFace, we first propose the One-
Threshold-for-All (OTA) evaluation protocol for FR, which utilizes one
fixed threshold called as Calibration Threshold to measure the perfor-
mance on different datasets. Then, to improve the performance of FR
models under the OTA protocol, we propose the Threshold Consistency
Penalty (TCP) to improve the consistency of the thresholds among mul-
tiple domains, which includes Implicit Domain Division (IDD) as well
as Calibration and Domain Thresholds Estimation (CDTE). Extensive
experimental results demonstrate the effectiveness of our method for FR.
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1 Introduction

Face recognition (FR) based on deep learning has been well investigated for many
years [32,33,40,5,4,6,39]. Most of the progress depends on large-scale training
data [10,46,16], deep neural network architectures [36,12,13], and effective loss
function designs [29,5,39,37,49,30,3,6]. Recently, with the increasing deployment
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Fig. 1. Similarity distributions of two datasets. The green and red histograms mean
the distributions of positive and negative pairs, respectively, where sp and sn denote
similarities of positive and negative pairs, respectively. (a). Based on existing evaluation
protocol, threshold 1 differs from threshold 2 a lot under the same FAR. (b). When we
use threshold 1 of dataset 1 to evaluate the dataset 2, a large number of false negative
(FN) samples from dataset 2 are produced. (c). When we use threshold 2 to evaluate
the dataset 1, many false positive (FP) samples from dataset 1 are generated.

of FR systems, fairness in FR has attracted broad interest from research com-
munities. For example, as reported in the 2019 NIST Face Recognition Vendor
Test [9], all participating FR algorithms exhibit different levels of biased perfor-
mances across various demographic groups (e.g., race, gender, age). However,
existing evaluation metrics cannot measure the degree of fairness on threshold
across multiple datasets for FR well. Specifically, current practical FR systems
usually calculate the True Accept Rate (TAR) under a pre-defined False Accept
Rate (FAR) (e.g., 1e-4). As shown in Fig. 1(a), we visualize the distributions of
the similarity scores from two datasets, and observe that dataset 1 and dataset 2
have different thresholds under the same FAR. which means that current evalua-
tion protocols adopt different thresholds for performance evaluation for different
datasets. We call such phenomenon as Threshold Imbalance on different datasets.
Besides, FR models seem to perform well on these two datasets under current
evaluation protocols in Fig. 1(a), but in Fig. 1(b) and Fig. 1(c), the performance
results of FR models are very sensitive to the changes of the thresholds. More-
over, when the FR models are deployed for industry, only one fixed threshold is
adopted for all scenarios, which indicates that the current evaluation protocol
with different thresholds for different datasets is not fully compatible with the
practical FR. In addition, most existing FR methods are mainly evaluated un-
der the current evaluation protocol in Fig. 1(a), which have not considered the
problem of threshold imbalance.

Motivated by the above analysis, in our OneFace, we propose a new One-
Threshold-for-All (OTA) evaluation protocol to better exploit the overall per-
formance and fairness on threshold of FR models on multiple datasets, and then
introduce an effective Threshold Consistency Penalty (TCP) scheme to tackle
the threshold imbalance problem in the training process.
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In OTA evaluation protocol, we directly measure the performance of the dif-
ferent datasets using only one fixed threshold, which is more consistent with
the practical FR and can be easily combined with existing evaluation protocols
Specifically, we call the fixed threshold for deployment as calibration threshold
tc. Given G datasets and the overall FAR (e.g., 1e-4), we introduce two types
of calibration threshold estimation methods. The first type is to combine all
datasets into one dataset directly and estimate tc under the overall FAR based
on the negative pairs constructed from the dataset, which is straight-forward
and feasible. However, as the computation cost is proportional to the number
of negative pairs, it will be unaffordable when the number of negative pairs of
the whole dataset is large. Thus, we also propose another calibration threshold
estimation method by using an extra dataset called as calibration dataset, where
the number of negative pairs in the calibration dataset is relatively acceptable.
Besides, the calibration dataset is supposed to cover images from as many do-
mains as possible. Once the calibration dataset is prepared, we can directly adopt
the threshold of this dataset under the overall FAR as tc. After obtaining the
calibration threshold, under the OTA evaluation protocol, we calculate the TAR
and FAR results for these G datasets based on tc, respectively. Meanwhile, we
propose a new fairness metric γ to denote the degree of the threshold imbalance
across G datasets. Specifically, we calculate the thresholds {tgd}Gg=1 within each
dataset, where tgd denotes the domain threshold for the g-th dataset under the
overall FAR. Then, we can obtain the γ based on tc and {tgd}Gg=1.

To improve the performance under the OTA evaluation protocol, our TCP
aims to mitigate the threshold imbalance among different domains in the train-
ing process. Specifically, first, as domain labels of the training dataset are usually
not available and it is necessary to obtain the domain label for computing the do-
main threshold, we propose to adopt an Implicit Domain Division (IDD) module
to assign the domain labels for samples implicitly following the GroupFace [18],
which aims to divide the samples of each mini-batch into M domains. M is a
pre-defined hyperparameter on the number of implicit domains. Then, we need
to construct negative pairs to calculate the calibration and domain thresholds.
Existing work [45] uses the weights of the last FC layer and the features of the
current batch to construct the negative pairs. However, as discussed in VPL [6],
the weights of the last FC layer update very slowly and the similarity distribu-
tions of the sample-to-prototype comparisons used in [45] are also different from
distributions of the sample-to-sample comparisons used in evaluation process.
Thus, this method [45] may lead to inaccurate threshold estimation for FR. To
generate accurate thresholds, inspired by MoCo [11], we propose to build a fea-
ture queue to maintain the features of the previous iterations. Then, in training,
we can construct the negative pairs based on the features of the current batch
and the features of the feature queue. After that, we calculate the similarities of
these negative pairs to obtain the calibration threshold tc. Besides, we generate
the domain threshold tmd for the m-th domain using the features from the m-th
domain of the current batch and the features of the feature queue, where the do-
main labels in each mini-batch are predicted by IDD module. Finally, we adopt
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the ratio of tmd and tc as the loss weight for the samples of m-th domain to re-
weighting the samples with high domain thresholds, which makes the thresholds
across domains more consistent and reduce the degree of threshold imbalance.

The contributions of our proposed OneFace are summarized as follows:

– We first investigate the limitations of the existing evaluation protocols and
propose a new One-Threshold-for-All (OTA) evaluation protocol to measure
the performance of different datasets under one fixed calibration threshold,
which is more consistent with the industry FR scenarios.

– Our proposed Threshold Consistency Penalty (TCP) scheme can improve
the fairness on threshold across the domains by penalizing the domains with
high thresholds, where we introduce the Implicit Domain Division (IDD) as
well as the Calibration and Domain Thresholds Estimation (CDTE).

– Extensive experiments on multiple face recognition benchmarks demonstrate
the effectiveness of our proposed method.

2 Related Work

Face Recognition. Face recognition (FR) is a key technique for biometric au-
thentication in many applications (e.g., electronic payment, video surveillance).
The success of deep FR can be credited to the following three important reasons:
large-scale datasets [50,2,46,16], powerful deep neural networks [36,32,31,35,25]
and effective loss functions [19,38,48,26,34,37,5,4,28,6,23,22,24,20,17,21,1]. The
mainstream of recent studies is to introduce a new objective function to maximize
inter-class discriminability and intra-class compactness. For example, Triplet
loss [30] enlarges the distances of negative pairs and reduce the distances of pos-
itive pairs in the Euclidean space. Recently, the angular constraint is introduced
into the cross-entropy loss function to improve the discriminative ability of the
learned representation [27,26]. For example, CosFace [39] and ArcFace [5] utilize
a margin item for better discriminative capability of the feature representation.
Besides, some mining-based loss functions (e.g., CurricularFace [14] and MV-
Arc-Softmax [43]) further consider the difficulty degree of samples to emphasize
the mis-classified samples and achieve better results. In addition, GroupFace[18]
aggregates implicit group-aware representations to improve the discriminative
ability of feature representations by using self-distributed labeling trick. More-
over, VPL [6] additionally introduces the sample-to-sample comparisons into
the training process for reducing the gap between the training and evaluation
processes for FR. Overall, existing methods mainly aim to improve the gener-
alization and discriminative abilities of the learned feature representation, but
they have not considered the limitations of existing evaluation protocols, where
different datasets use different thresholds. In contrast, OneFace investigates the
gap between existing evaluation protocols and the practical deployment scenarios
from a new perspective, and we propose the OTA evaluation protocol to evaluate
the performance of different datasets under the same calibration threshold.
Fairness. Recently, more and more attention has been attracted to the fair-
ness for FR models. A straightforward way to tackle the fairness issue is to
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build large-scale training datasets (e.g., MS-Celeb-1M [10], Glint360k [2] and
WebFace260M [50]). Unfortunately, the time-consuming collected datasets of-
ten include unbalanced distributions of different attributes (e.g., race, gender,
age), which also introduce inherent bias on different attributes. Recently, Wang
et al. [41] introduce the BUPT-balanced as a balanced dataset on race, and
BUPT-Globalface to reveal the real distribution of the world’s population for
fairness study. However, it is still difficult to collect the FR datasets with bal-
anced distribution on different attributes and it is also unclear if the FR models
trained on attribute-balanced datasets can eliminate the fairness bias completely.
Therefore, some works have proposed to design effective algorithms instead of
collecting datasets. For example, Wang et al. [42] propose a deep information
maximization adaptation network to transfer the knowledge from Caucasians to
other races, and propose another reinforcement learning-based method [41] to
learn the optimal margins for different racial groups. Gong et al. [7,8] further
utilize a debiasing adversarial network with four specific classifiers, where one
classifier is designed for identification and the others are designed for demo-
graphic attributes. Xu et al. [45] propose to promote the consistency of instance
FPRs to improve fairness across different races. In general, existing methods
usually consider improving the accuracy and fairness on all races, but different
thresholds are still used for different domains (e.g., races). In contrast to these
methods, our proposed OneFace focuses on improving fairness of different do-
mains with the same calibration threshold, which is more compatible with the
real-world scenarios and provides new insight for FR.

3 Preliminary

In this section, we take the widely used 1:1 face verification evaluation protocol
as an example to show the evaluation process of FR. False Accept Rate (FAR)
and True Accept Rate (TAR) are used in face verification. Given Np positive
pairs, the TAR α is computed as follows:

α =
1

Np

Np∑
j=1

1(sjp > t), (1)

where t is the chosen similarity score threshold and sjp is the similarity score of
the j-th positive pair. 1(x) is the indicator function, which returns 1 when x is
true and returns 0 when x is false. Similarly, given Nn negative pairs, the FAR
β is defined as follows:

β =
1

Nn

Nn∑
i=1

1(sin > t), (2)

where sin is the similarity score of the i-th negative pair.
In the testing process, we fix a FAR (e.g., 1e-4) and calculate the correspond-

ing TAR to represent the performance of the FR models. For each dataset, the
threshold t under the specific FAR β in Eq. 2 can be generated by the quantile
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of the similarity scores of all negative pairs. Then, based on the similarities of
all positive pairs and the threshold t, we calculate the TAR α.

4 OneFace

In this section, we describe our OneFace framework, which includes the newly
proposed One-Threshold-for-All (OTA) evaluation protocol and Threshold Con-
sistency Penalty (TCP) scheme.

4.1 One-Threshold-for-All Evaluation Protocol

We first discuss the necessity of One-Threshold-for-All (OTA) evaluation pro-
tocol, and then introduce the details of the OTA evaluation protocol for FR,
where we first estimate the calibration threshold under the overall FAR (e.g.,
1e-4) and then calculate the performance results for different datasets.
Necessity of the OTA evaluation protocol. The above-mentioned evalua-
tion protocol (TAR@FAR) in Sec. 3 has been adopted in many works. Never-
theless, we argue that the current evaluation protocols are not compatible with
the practical FR, as different testing datasets use different thresholds even if
the model and the pre-defined FAR are the same. Moreover, we can observe
the Threshold Imbalance phenomenon, where these thresholds vary a lot when
these datasets are from different domains. As shown in Table 1, we report the
TAR and threshold results of different races from the RFW [42] dataset under
the FAR of 1e-4 and 1e-5, where the thresholds are estimated within each race
under the same FAR. It can be easily observed that current evaluation proto-
col adopts different thresholds for different races and the thresholds differ a lot
in some races. For example, the threshold of African is much higher than the
threshold of Caucasian under the same FAR. In contrast, when FR model is
deployed in practice, only one fixed threshold score (i.e., calibration threshold)
is applied for all scenarios, which means that the current evaluation protocol is
not fully consistent with the practical FR applications. Therefore, it is critical
to evaluate the performance of all domains using one fixed threshold for FR.

Here, we describe the evaluation process of OTA for G testing datasets. Given
the overall FAR (e.g., 1e-4), we first generate the fixed calibration threshold.
Then, based on the calibration threshold, we calculate the TAR and FAR results
for different datasets. Finally, we also define the fairness metric to represent the
degree of the threshold imbalance for these datasets.

Table 1. The threshold and TAR results based on classical 1:1 verification evaluation
protocol when FAR is 1e-4 and 1e-5 on different races from the RFW dataset [42].

Results
FAR=1e-4 FAR=1e-5

African Asian Caucasian Indian African Asian Caucasian Indian

Threshold 0.455 0.403 0.384 0.419 0.511 0.465 0.443 0.478
TAR 92.29 92.61 95.58 94.47 86.25 85.90 91.05 89.54
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Calibration Threshold Estimation. In OTA, given G testing datasets, we
describe two types of calibration threshold estimation methods. In the first type,
we directly combine these G datasets into one whole dataset and extract the fea-
tures of all negative pairs to calculate the similarities of these pairs. Then, we
obtain the threshold score under the overall FAR (e.g., 1e-4) as the calibration
threshold tc. The first type is to estimate the threshold under the overall FAR
based on the negative pairs constructed from all datasets, which is feasible and
effective when the number of negative pairs is relatively acceptable. However,
when the number of negative pairs increases, large computation costs for thresh-
old estimation are needed. Therefore, we propose another calibration threshold
estimation method by adopting an extra dataset (e.g., FairFace dataset [15]),
which is called as calibration dataset. Specifically, we suppose that the calibra-
tion dataset covers images from as many domains as possible, which aims to
make the calibration threshold tc general and accurate. Besides, the size of the
calibration dataset should be acceptable, which leads to affordable computation
costs. Similarly, we calculate the similarities of all negative pairs from the cali-
bration dataset, and obtain the calibration threshold tc under the overall FAR.
Performance under the Calibration Threshold. After obtaining the cali-
bration threshold tc, for g-th dataset, where g ∈ {1, ..., G}, we can easily pro-
duce the TAR αg and FAR βg within g-th dataset under the threshold tc.

Then, we directly adopt the mean µα = 1
G

∑G
g=1 αg and the variance σ2

α =
1
G

∑G
g=1 (αg − µα)

2 of all datasets to represent the overall TAR performance for
these datasets. As the FAR value is usually small (e.g., 1e-4) and the magnitude
of the FARs under the same threshold among different domains varies greatly,
we adopt the log10 operation to maintain the monotonicity and simplify the cal-
culation. Additionally, without this operation, statistics values are dominated by
the large FAR value. For example, the mean of {1e-3, 1e-4, 1e-5} is dominated
by 1e-3, where 1e-5 is ignored. Thus, for the results of FAR, we utilize the mean
µβ = 1

G

∑G
g=1 −log10βg and the variance σ2

β = 1
G

∑G
g=1 (−log10βg − µβ)

2 of all
datasets. Furthermore, we propose a fairness metric denoted as γ to represent
the degree of the threshold imbalance across the G datasets, Specifically, we
also compute the threshold tgd within g-th dataset under the overall FAR, where
we call tgd as the domain threshold for the g-th dataset. Meanwhile, we define
the deviations between G domain thresholds (i.e., {tgd}Gg=1) and the calibration
threshold tc as the fairness metric γ, which is illustrated as follows:

γ =

√√√√ 1

G

G∑
g=1

(tgd − tc)2. (3)

In Eq. 3, γ is larger when the degree of threshold imbalance is more serious.

4.2 Threshold Consistency Penalty

To improve the performance under the OTA evaluation protocol, we propose
the Threshold Consistency Penalty (TCP) scheme to mitigate the threshold
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Fig. 2. The framework of our Threshold Consistency Penalty (TCP) scheme, which
includes the Implicit Domain Division (IDE) as well as the Calibration and Domain
Thresholds Estimation (CDTE). In each iteration, we first use the FR model to extract
the features {fi}Ni=1 of each mini-batch and update the feature queue Q, where N is
the number of samples in each mini-batch. Then, we use the IDD to divide the {fi}Ni=1

into M domains implicitly, where the domain loss Ld is used. After that, we calculate
the calibration threshold tc and domain thresholds {tmd }Mm=1. Finally, based on the tc,
{tmd }Mm=1, {fi}Ni=1 and ground-truth identity labels, we calculate the TCP loss Lt.

imbalance among different domains in training as shown in Fig. 2, where we
define a domain as a set of samples that share any common visual-or-non-visual
properties for FR.

Specifically, TCP includes Implicit Domain Division (IDD) as well as Cal-
ibration and Domain Thresholds Estimation (CDTE). In IDD, we propose to
divide the images of each mini-batch into several domains without additional
annotations. In CDTE, we first build sufficient negative pairs using the features
of the current batch and the features in our proposed feature queue. Then, we
compute the similarities of these negative pairs and estimate the calibration and
domain thresholds. Finally, based on the calibration and domain thresholds, we
adaptively adjust the loss weights of samples from each domain.
Implicit Domain Division. As the domain labels are usually unavailable in the
training dataset, our IDD is trained in a self-supervised manner, which predicts
the domain label for each sample without any explicit ground-truth information.
Specifically, inspired by GroupFace [18], our IDD is implemented by two fully-
connected layers and a softmax layer, which takes the feature representation fi
of the i-th sample as input and predicts the domain probabilities as follows:

{pmi }Mm=1 = H(fi). (4)

H denotes the neural network of IDD. M is a pre-defined hyperparameter on
the number of implicit domains, which is not related to the number of evalua-
tion datasets (i.e., G in OTA). pmi is the domain probability for m-th domain.
Additionally, H is trained by the self-distributed labeling strategy. Specifically,
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{pmi }Mm=1 is the initial predictive domain probabilities for i-th sample. Follow-
ing [18], to generate uniformly-distributed domain labels, we use modified proba-
bility regulated by a prior probability, where an expectation-normalized strategy
is used. The updated domain probability p̃mi for m-th domain is as follows:

p̃mi =
1

M
(pmi − 1

T

T∑
i=1

pmi ) +
1

M
, (5)

where T is the number of samples to calculate the expectation value. We directly
set T as the number of samples in each mini-batch. Thus, the expectation of the
expectation-normalized probability 1

T

∑T
i=1 p̃

m
i = 1

M . The domain label di ∈
{1, ...,M} for i-th sample is obtained as di = argmax

m
p̃mi . Meanwhile, to reduce

the divergence between the prediction probabilities and the generated domain
label, a domain loss Ld based on cross-entropy loss is defined as follows:

Ld = − 1

N

N∑
i=1

log(
ep

di
i∑M

m=1 e
pm
i

), (6)

where N is the number of samples in each iteration.
Calibration and Domain Thresholds Estimation. To estimate the calibra-
tion and domain thresholds in the training process, we first need to construct suf-
ficient negative pairs with high qualities. Inspired by MoCo [11], for unsupervised
learning, which adopts a memory bank from the previous mini-batches to obtain
sufficient negative samples, we propose to build a feature queue Q ∈ RK×N×d

to construct sufficient negative pairs, as shown in Fig. 2, where K is the num-
ber of iterations, and d represents the dimension of the feature representation
extracted by the neural network for each face image. Meanwhile, as discussed
in VPL [6], features drift slowly for FR models, which represents that features
extracted previously can be considered as an approximation of the output of
the current network within a certain number of training steps. Thus, we could
set K as a relatively large value (K = 1000 in our work) to generate sufficient
negative pairs with high qualities. Furthermore, we establish an auxiliary label
queue, Q′ ∈ RK×N to store the identity labels for the features in Q. In each
iteration, we first extract the features {fi}Ni=1 of the current batch, where yi is
the corresponding label of fi. Then, the features {fi}Ni=1 and the labels {yi}Ni=1

are enqueued into feature queue Q and label queue Q′, respectively. After that,
the features and labels from the oldest batch in Q and Q′ are also dequeued.
Finally, we can construct the negative pairs based on {fi}Ni=1 and Q.

For Calibration Threshold Estimation, we calculate the similarities of all
negative pairs, and generate the calibration threshold tc in training under the
overall FAR (e.g., 1e-4). For Domain Threshold Estimation, we first generate
the domain labels for the samples of the current mini-batch based on IDD.
Then, to accurately estimate the threshold distribution for each domain m, only
the features of samples with the same domain label (i.e., m) are selected to
construct domain-specific negative pairs with the features fromQ. By calculating
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the similarities of such domain-specific negative pairs, we can obtain the domain
threshold tmd under the same FAR value (e.g., 1e-4) for the m-th domain. Finally,
the calibration threshold tc and domain thresholds {tmd }Mm=1 are obtained.
Loss formulation. After generating the calibration and domain thresholds, we
define the TCP loss Lt from the domain level as follows:

Lt =
1

N

M∑
m=1

∑
i∈Tm

(
tmd
tc

· Li). (7)

Tm is an index set, which contains the indices of samples with domain label m in
each mini-batch. N is the number of samples in each mini-match, and Li denotes
the classification loss for i-th sample. In our work, we utilize the widely-used
ArcFace [5] loss as Li. To this end, our TCP loss will enforce the neural network
to pay more attention for these samples from domains with tmd >tc as there are
more false positive pairs with higher scores than tc, and we can automatically
down-weight the contribution of these samples from domains with tmd <tc during
training. In other words, our TCP loss aims to reduce the degree of threshold
imbalance across multiple domains by dynamically adjusting the loss weights for
M domains. It should be mentioned that Li can be replaced with many existing
loss functions [39,14]. Finally, the overall loss function of our proposed method
is defined as follows:

L = Lt + λLd, (8)

where λ is the loss weight for the domain loss Ld of in our IDD.

5 Experiments

In this section, we first report the results of different methods on multiple cross-
domain settings under our proposed OTA evaluation protocol, where one fixed
calibration threshold for different datasets. Then, we perform detailed analysis
and discussion to further show the effectiveness of our method.

5.1 Implementation Details

Dataset. Our experimental settings include two settings (i.e., cross-race and
cross-gender settings) as follows. For cross-race setting, we follow [45] to em-
ploy the BUPT-Balancedface [41] as the training dataset, and use the RFW
dataset [42] as the testing dataset with four race groups (i.e., African, Asian,
Caucasian, and Indian), where we directly use the whole RFW dataset to esti-
mate the calibration threshold under the overall FAR for OTA evaluation pro-
tocol. For the cross-gender setting, we follow many existing works [5,14] to use
the refined version of MS-1M [10] dataset as the training dataset. For the testing
dataset of cross-gender setting, we split the IJB-B dataset [44] into two datasets
(i.e., IJB-B(F), IJB-B(M)) manually based on the gender attribute (i.e., female
or male), where we also use the whole IJB-B dataset to estimate the calibration
threshold under the overall FAR for OTA evaluation protocol.
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Experimental setting. For the pre-processing of the training data and testing
data, we follow [5,6,14] to generate the normalized face crops (112 × 112) with
five landmarks detected by MTCNN [47]. For the backbone network for cross-
race and cross-dataset settings, we follow the state-of-the-art method [45] to use
the ResNet34 [12] to produce 512-dim feature representation. For the backbone
network for cross-gender setting, we use the ResNet100 [12] for all methods. For
the training process on BUPT-Balancedface [41], the initial learning rate is 0.1
and divided by 10 at the 55k, 88k, 99k iterations, where the total iteration is set
as 110k. For the training process on the refined MS-1M [10], the initial learning
rate is 0.1 and divided by 10 at the 110k, 190k, 220k iterations, where the total
iteration is set as 240k. The batchsize is set as 512 for all experiments. For the
feature queue Q, d is set as 512, the number of iterations (i.e., K) in the feature
queue and label queue is set as 1000. In training, the number of implicit domains
(i.e., M) in IDD is set as 8. The loss weight (i.e., λ) of the domain loss Ld is set
as 0.05. Under the OTA evaluation protocol, G is set as 4, 2 for cross-race and
cross-gender settings, respectively, and we report the results of our method and
recent widely-used loss functions [5,39,14,18].

5.2 Experimental results under the OTA evaluation protocol

Results on cross-race setting. As shown in Table 2, for cross-race setting, we
report the results of different methods among four demographic groups in the
RFW dataset [42] under the OTA evaluation protocol, where we use the same
calibration threshold for these groups. In Table 2, for the TAR results, when
compared with methods, we observe that our method achieves higher TAR with
lower variance. For the −log10FAR, our method also achieves lower variance,
which shows the effectiveness of our method.
Results on cross-gender setting. As shown in Table 3, we report the results of
different methods under the OTA evaluation protocol for cross-gender setting.
Specifically, we divide the original IJB-B dataset [44] into two datasets (i.e.,
IJB-B(F) and IJB-B(M)) based on the gender attribute, where IJB-B(F) and
IJB-B(M) represents the female and male datasets, respectively. Then, we use
the whole IJB-B dataset to estimate the calibration threshold under the overall
FAR of 1e-4. In Table 3, we have the following observations: (1) The performance
of IJB-B(F) is lower than IJB-B(M) a lot, which indicates the gender attribute
influences the FR performance greatly. (2) Our method achieves better average
performance results and lower variances when compared with other baseline
methods on both TAR and FAR metrics.

5.3 Analysis

Analysis on the classical evaluation results on the RFW dataset. As
shown in Table 4, we also report the results of different methods based on the
classical 1:1 verification results on the RFW dataset, where different races use
different thresholds. In Table 4, we observe that our method also achieves better
results when compared with other methods, which further shows the effectiveness



12 J. Liu et al.

Table 2. The performance of different methods under the OTA evaluation protocol
when overall FAR is 1e-4 for cross-race setting.

Method
TAR −log10FAR

African Asian Caucasian Indian Avg.↑ Std.↓ African Asian Caucasian Indian Avg.↑ Std.↓
ArcFace [5] 96.71 93.80 95.33 96.22 95.51 1.107 3.030 3.791 4.052 3.519 3.598 0.378
CosFace [39] 96.44 91.83 94.36 94.99 94.41 1.667 3.024 3.810 4.053 3.477 3.591 0.386

CurricularFace [14] 96.79 93.80 95.41 96.14 95.54 1.114 2.999 3.811 4.045 3.554 3.602 0.389
GroupFace [18] 96.76 94.00 95.62 96.27 95.66 1.041 3.010 3.778 4.028 3.552 3.592 0.376

Ours 96.96 95.02 95.92 96.43 96.08 0.715 3.057 3.604 3.980 3.641 3.571 0.331

Table 3. The performance of different methods under the OTA evaluation protocol
when overall FAR is 1e-4 for cross-gender setting.

Method
TAR −log10FAR

IJB-B(F) IJB-B(M) Avg.↑ Std.↓ IJB-B(F) IJB-B(M) Avg.↑ Std.↓
ArcFace [5] 91.85 96.96 94.41 2.555 3.535 4.079 3.807 0.272
CosFace [39] 91.46 96.69 94.07 2.615 3.550 4.037 3.794 0.244

CurricularFace [14] 91.71 96.98 94.35 2.635 3.559 4.037 3.798 0.239
GroupFace [18] 91.93 97.09 94.51 2.580 3.548 4.037 3.793 0.245

Ours 92.29 97.26 95.03 2.335 3.591 4.062 3.827 0.236

of our method. Moreover, as shown in Table 5, we also report the verification
accuracy results of different methods on the RFW dataset, where different races
use different thresholds. Note that the results of other methods are directly
quoted from [45]. In Table 5, we observe that our method also achieves better
results on most cases when compared with other methods, which further shows
the effectiveness of our method.

Analysis on the fairness metric. As shown in Table 6, we provide the fairness
results of different methods under the OTA evaluation protocol when overall
FAR is 1e-4 for cross-race setting, and we observe the fairness metric in Eq. 3
of our method is also lower than other methods, which shows that our method
can mitigate the threshold imbalance greatly for cross-race setting.

Analysis on the computation costs. No extra costs (e.g., GPU memory
usage, time) are required at inference. Besides, in training, when compared with
ArcFace baseline method, the training time and GPU memory usage of our
method are 1.183 times and 1.005 times, respectively, which is acceptable.

Analysis on the effectiveness of TCP. In Fig. 3(a) and Fig. 3(b), we visualize
the distributions of similarity scores on the African and Caucasian from the RFW
dataset of different methods (i.e., ArcFace and Ours) and the red vertical line
denotes the domain threshold within each group under the FAR of 1e-4. When
compared with the ArcFace, the difference of the domain thresholds between
African and Caucasian is smaller in our method, which demonstrates that our
method can mitigate the threshold imbalance among different domains.
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Table 4. 1:1 verification TAR results on the RFW dataset.

Method
TAR@FAR=1e-4

African Asian Caucasian Indian

ArcFace [5] 92.29 92.61 95.58 94.47
CosFace [39] 91.24 90.66 94.59 92.57

CurricularFace [14] 92.41 92.88 95.56 94.73
GroupFace [18] 92.48 92.82 95.73 94.69
Xu et al. [45] 93.31 93.05 95.71 92.89

Ours 93.43 93.39 95.93 95.38

Table 5. Verification accuracy (%) on the RFW dataset.

Methods African Asian Caucasian Indian Avg.↑ Std.↓
ArcFace [5] (R34) 93.98 93.72 96.18 94.67 94.64 1.11
CosFace [39] (R34) 92.93 92.98 95.12 93.93 93.74 1.03
RL-RBN [41] (R34) 95.00 94.82 96.27 94.68 95.19 0.93
Xu et al. [45] (R34) 95.95 95.17 96.78 96.38 96.07 0.69

ArcFace [5] (R100) 96.43 94.98 97.37 96.17 96.24 0.98
Xu et al. [45] (R100) 97.03 95.65 97.60 96.82 96.78 0.82

Ours (R100) 97.33 95.95 98.10 96.55 97.01 0.79

5.4 Discussion

Discussion on the OTA evaluation protocol. In our work, for FR, we
propose the OTA protocol to measure the fairness problem by evaluating the
results of different datasets under one fixed calibration threshold, and we are
not to search for one threshold given fixed mixture distributions. Specifically,
when an FR model is deployed on FR systems (e.g., hardware devices), only
one fixed threshold is used and it is infeasible to select a threshold for each
face image. The reasons are as follows: (1) FR systems usually focus on uncon-
strained (in the wild) scenarios (e.g., environment), which indicates that it is
difficult to define or distinguish the specific scenarios for different face images
(e.g., probe/gallery). In other words, FR models are supposed to work well for
different scenarios (e.g. airport/train station, sunny day/rainy day). (2) Even if
the scenario is constrained, it is still difficult to define the number of domains
(e.g., facial appearance), as there are many different aspects to describe the prop-
erty of each domain. For example, age (old, youth, child), gender (male, female),
glasses (w, w/o) and many other implicit domains that cannot be observed. (3) If
we select a threshold for each image, extra costs (e.g., domain prediction model)
are needed, and accumulation errors will be brought by domain prediction and
face verification tasks. (4) Setting different thresholds for some domains (e.g.,
gender, race) may also bring ethical risks. Overall, when compared with existing
evaluation protocol, our OTA protocol is more consistent with real-world sce-
narios, and our proposed TCP method aims to align the similarity distributions
of different domains and not to search for optimal thresholds.
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Table 6. The fairness of different methods under the OTA evaluation protocol when
overall FAR is 1e-4 for cross-race setting.

Models ArcFace [5] CosFace [39] CurricularFace [14] GroupFace [18] Ours

Fairness (γ) 0.038 0.043 0.037 0.038 0.030

Ours

(a) African (b) Caucasian

ArcFace OursArcFace

Fig. 3. (a) The similarity distributions of African. (b) The similarity distributions of
Caucasian. The red vertical lines in (a) and (b) denote the thresholds under the FAR
of 1e-4 within each race dataset.

Discussion on the calibration threshold. In the industry scenarios, we can-
not obtain the similarity distributions of all datasets. Thus, we use the calibra-
tion threshold generated by the similarity distribution from the well-constructed
calibration dataset to distinguish whether a face image pair belongs to the same
identity. Specifically, to improve the robustness of the calibration threshold for
practical FR, when the model is deployed, we can build the calibration dataset
to generate the fixed calibration threshold, and the calibration threshold will be
more suitable when the distribution of the calibration dataset is closer to the
distribution of the real-world scenarios.

6 Conclusion

In our OneFace, we first investigate the limitations of the existing evaluation pro-
tocols for FR and propose the One-Threshold-for-All (OTA) evaluation protocol,
which is more consistent with the deployment phase. Besides, we also propose the
Threshold Consistency Penalty (TCP) scheme to improve the performance of FR
models under the OTA protocol. Extensive experiments on multiple FR bench-
mark datasets demonstrate the effectiveness of our proposed method. Moreover,
we hope our method can motivate other researchers to investigate the fairness
problem on practical FR systems (e.g., more reliable fairness metric), and explore
more research areas on the fairness in the future work.
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