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Abstract. Learning robust feature representation from large-scale noisy
faces stands out as one of the key challenges in high-performance face
recognition. Recent attempts have been made to cope with this challenge
by alleviating the intra-class conflict and inter-class conflict. However,
the unconstrained noise type in each conflict still makes it difficult for
these algorithms to perform well. To better understand this, we refor-
mulate the noise type of each class in a more fine-grained manner as
N-identities|KC-clusters. Different types of noisy faces can be gen-
erated by adjusting the values of N , K, and C. Based on this unified
formulation, we found that the main barrier behind the noise-robust rep-
resentation learning is the flexibility of the algorithm under different N ,
K, and C. For this potential problem, we propose a new method, named
Evolving Sub-centers Learning (ESL), to find optimal hyperplanes to
accurately describe the latent space of massive noisy faces. More specif-
ically, we initialize M sub-centers for each class and ESL encourages it
to be automatically aligned to N-identities|KC-clusters faces via pro-
ducing, merging, and dropping operations. Images belonging to the same
identity in noisy faces can effectively converge to the same sub-center and
samples with different identities will be pushed away. We inspect its effec-
tiveness with an elaborate ablation study on the synthetic noisy dataset
with different N , K, and C. Without any bells and whistles, ESL can
achieve significant performance gains over state-of-the-art methods on
large-scale noisy faces.
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1 Introduction

Owing to the rapid development of computer vision technology [24, 23, 22], face
recognition [26, 4, 16, 30, 15] has made a remarkable improvement and has been
widely applied in the industrial environment. Much of this progress was sparked
by the collection of large-scale web faces as well as the robust learning strate-
gies [4, 26] for representation learning. For instance, MS-Celeb-1M (MS1MV0) [8]
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Fig. 1. Illustration of fine-grained noisy faces and ESL (Best viewed in color). For ID2
and ID3 in Class1, there is only one image for each ID, and they will be removed by
the dropping operation. ID1 appears in both Class1 and Class2, so that the merging
operation will merge images in Class2 with ID1 into Class1. In Class3, there are 3
IDs but only 2 sub-centers, so the producing operation will produce another valid sub-
center. Our proposed ESL can be flexibly adapted to different combinations of NKC,
and is more robust to unconstrained real-world noise.

provides more than 10 million face images with rough annotations. The growing
scale of training datasets inevitably introduces unconstrained noisy faces and
can easily weaken the performance of state-of-the-art methods. Learning robust
feature representation from large-scale noisy faces has become an important chal-
lenge for high-performance face recognition. Conventional noisy data learning,
such as recursive clustering, cleaning, and training process, suffers from high
computational complexity and cumulative error. For this problem, Sub-center
ArcFace [2] and SKH [13] are proposed to tackle the intra-class conflict or inter-
class conflict by designing multiple sub-centers for each class. These algorithms
demonstrate remarkable performance in the specific manual noise. However, they
are still susceptible to the unconstrained types of real-world noisy faces. Nat-
urally, we found that it is far from enough to just divide label noise in face
recognition roughly into intra-class noise and inter-class noise. It greatly limits
our understanding of the variant noise types and the exploration of noise-robust
representation learning strategies.

To better understand this, we reformulate the noise data in a more fine-
grained manner as N-identities|KC-clusters faces for each class. Faces sharing
identity (ID) means these images come from the same person. Faces annotated
with the same label construct a class, and there may be annotation errors in
the class. If there are no less than two faces for an identity, these images build a
meaningful cluster [7]. Please refer to the Sec. 1 in the appendix for the holistic
description of terms and notations. Taking the Class1 in Fig. 1 as an example,
there are 3 IDs marked with ID1, ID2 and ID3, so the N in Class1 is 3. However,
only ID1 contains more than 2 images, so the K in Class1 is 1. Furthermore, ID1
appears in both Class1 and Class2, which indicates one inter-class conflict, so the
C in Class1 is 1. As shown in Table 1, our proposed N-identities|KC-clusters
formulation can clearly represent different fine-grained noisy data.
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Table 1. Noise type in different combination of N , K, and C. △ represents intra-class
conflict in which there are multiple clusters in the class. □ represents intra-class conflict
where there are outlier faces in the class. ♢ represents the inter-class conflict in which
there are multiple clusters with the same identify in different classes.

N = K = 1 N = K > 1 N > K > 1 N > K = 1 N > K = 0

C = 0 - △ △ □ □ □
C > 0 ♢ △ ♢ △ □ ♢ □ ♢ -

However, if N and K are larger than the predefined sub-center number in
Sub-center ArcFace [2] and SKH [13], images without corresponding sub-center
will lead to intra-class conflict. If C exceeds the sub-center number in SKH [13],
extra conflicted clusters will bring inter-class conflict. Both intra-class conflict
and inter-class conflict will lead to the wrong gradient, which would dramatically
impair the representation learning process.

In this paper, we constructively propose a flexible method, named Evolving
Sub-centers Learning (ESL), to solve this problem caused by unconstrained N ,
K, and C. More specifically, we initialize M sub-centers for each class first. Im-
ages belonging to the same identity will be pushed close to the corresponding
positive sub-center and away from all other negative sub-centers. Owning to elab-
orate designed producing, dropping, and merging operations, ESL encourages the
number of sub-centers to be automatically aligned to N-identities|KC-clusters
faces. As shown in Fig. 1, our proposed ESL can be flexibly adapted to dif-
ferent combinations of NKC, and is more robust to unconstrained real-world
noise. We inspect its effectiveness with elaborate ablation study on variant
N-identities|KC-clusters faces. Without any bells and whistles, ESL can achieve
significant performance gains over current state-of-the-art methods in large-scale
noisy faces. To sum up, the key contributions of this paper are as follows:

- We reformulate the noise type of faces in each class into a more fine-grained
manner as N-identities|KC-clusters. Based on this, we reveal that the key
to robust representation learning strategies under real-world noise is the
flexibility of the algorithm to the variation of N , K, and C.

- We introduce a general flexible method, named Evolving Sub-centers Learn-
ing (ESL), to improve the robustness of feature representation on noisy train-
ing data. The proposed ESL enjoys scalability to different combinations of
N , K, and C, which is more robust to unconstrained real-world noise.

- Without relying on any annotation post-processing or iterative training, ESL
can easily achieve significant performance gains over state-of-the-art methods
on large-scale noisy faces.

2 Related work

Loss function for Face Recognition. Deep face recognition models rely heav-
ily on the loss function to learn discriminate feature representation. Previous
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works [4, 25, 26, 12, 20, 14, 28, 6, 31] usually leverage the margin penalty to opti-
mize the intra-class distance and the inter-class distance. Facenet [20] uses the
Triplet to force that faces in different classes have a large Euclidean distance than
faces in the same class. However, the Triplet loss can only optimize a subset of
all classes in each iteration, which would lead to an under-fitting phenomenon.
It is still a challenging task to enumerate the positive pairs and negative pairs
with a growing number of training data. Compared with the sample-to-sample
optimization strategy, Liu et al. [14] proposes the angular softmax loss which en-
ables convolutional neural networks to learn angularly discriminative features.
Wang et al. [26] reformulates Softmax-base loss into a cosine loss and introduces
a cosine margin term to further maximize the decision margin in the angular
space. Deng et al. [4] directly introduces a fixed margin, maintaining the consis-
tency of the margin in the angular space. Liu et al. [16] adopts the hard example
mining strategy to re-weight temperature in the Softmax-base loss function for
more effective representation learning.
Dataset for Face Recognition. Large-scale training data can significantly
improve the performance of face recognition models. MS1MV0 [8], in which
there are about 100K identities and 1M faces, is the most commonly used face
recognition dataset. MS1MV3 is a cleaned version from MS1MV0 with a semi-
automatic approach [5]. An et al. [1] cleans and merges existing public face recog-
nition datasets, then obtains Glint360K with 17M faces and 360K IDs. Recently,
Zhu et al. [35] proposes a large-scale face recognition dataset WebFace260M and
a automatically cleaning pipeline. By iterative training and cleaning, they pro-
posed well-cleaned subset with 42M images and 2M IDs.
Face Recognition under Noisy Data. Iterative training and cleaning is an
effective data cleanup method. However, it is extremely inefficient as the face
number increases. Recent works [27, 10, 32, 4, 13, 33, 34] focus on efficient noisy
data cleanup methods. Zhong et al. [32] decouples head data and tail data of a
long-tail distribution and designs a noise-robust loss function to learn the sample-
to-center and sample-to-sample feature representation. Deng et al. [2] designs
multiple centers for each class, splitting clean faces and noisy faces into different
centers to deal with the inter-class noise. Liu et al. [13] leverages multiple hyper-
planes with a greedy switching mechanism to alleviate both inter-class noise and
intra-class noise. However, these methods are sensitive to hyper-parameter and
can not tackle the complex noisy data distribution.

3 The Proposed Approach

In this section, we are committed to eliminating the unconstrained real-world
noise via a flexible and scalable learning manner, named Evolving Sub-centers
Learning, that can be easily plugged into any loss functions. The pipeline of
ESL is as shown in Fig. 2. We will first introduce our proposed ESL and then
give a deep analysis to better understand its effectiveness and flexibility under
fine-grained noisy faces. Finally, we conduct a detailed comparison between ESL
and the current state-of-the-art noise-robust learning strategies.
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Fig. 2. The pipeline of the Evolving Sub-centers Learning. We initialize M sub-centers
for each class and they will evolve adaptively to align the data distribution. It pushes
the images belonging to an identity close to the specific sub-center and away from all
other negative sub-centers. The sub-center with a confusing similarity to the current
sample will be ignored in the latent space. This can effectively dispose of the label
conflict caused by fine-grained noisy faces.

3.1 Evolving Sub-centers Learning

In face recognition tasks, the unified loss function can be formulated as:

L(xi) = −log
ef̂i,yi

ef̂i,yi +
∑S

j=1,j ̸=yi
efi,j

, (1)

where i is the index of face images, yi represents the label ID of image Ii and S
indicates the total class number in the training data. Let the xi and Wj denote
the feature representation of face image Ii and the j-th class center, the logits
f̂i,yi

and fi,j can be computed by:

f̂i,yi = s · [m1 · cos(θi,yi +m2)−m3], (2)

fi,j = s · cos(θi,j), (3)

where s is the re-scale parameter and θi,j is the angle between the xi and Wj

normalized with L2 manner. For ArcFace with m1 = 1 and m3 = 0, we can
compute the θi,yi by:

θi,yi = arccos(
WT

yi

||WT
yi
||2

xi

||xi||2
). (4)

As shown in SKH [13], Eq. (1) will easily get wrong loss under N > 1 which
indicates at least two different identities exist in the images currently labeled as
the same identity. In this paper, we address this problem by proposing the idea
of using class-specific sub-centers for each class, which can be directly adopted
by any loss functions and will significantly increase its robustness. As illustrated
in Fig 2, we init Mj sub-centers for j-th class where each center is dominated
by a learnable vector Wj,mj

,mj ∈ [1,Mj ]. The original class weight Wj ∈ R1×D

can be replaced by all sub-centers Wj ∈ R1×Mj×D. Based on this, Eq. (1) can
be re-written as:
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Fig. 3. Illustration of the sub-centers producing, dropping and merging. The instances
with black color indicate the sub-centers. The instance belonging to each sub-center is
represented by the same shape and different colors mean different identities.

L(xi) = −log
ef̂i,yi,m

ef̂i,yi,m +
j∈[1,C],mj∈[1,Mj ]∑

(j,mj )̸=(yi,m)

(1− 1{cos(θi,j,mj
) > Dj,mj

})efi,j,mj

,

(5)

where indicator function 1{cos(θi,j,mj
)>Dj,mj

} returns 1 when cos(θi,j,mj
)>Dj,mj

and 0 otherwise. We calculate the mean µj,mj
and standard deviation σj,mj

of
the cosine similarity between the sub-center Wj,mj

and the samples belonging
to it. Dj,mj can be generated by:

Dj,mj
= µj,mj

+ λ1σj,mj
(6)

f̂i,yi,m and fi,j,mj are computed by:

f̂i,yi,m = s · [m1 · cos(θi,yi,m +m2)−m3], (7)

fi,j,mj
= s · cos(θi,j,mj

), (8)

where θi,j,mj is the angle between the feature representation xi of the i-th face
image and the mj-th sub-center Wj,mj in j-th class. We determine m for sample
Ii by the nearest distance priority manner as:

m = argmax
myi

cos(θi,yi,myi
). myi

∈ [1,Myi
] (9)

Given an initial Mj for each class, Eq. (5) can capture the unconstrained
distribution of the whole training data with potential label noise. It pushes the
images belonging to the same identity close to a specific sub-center and away
from all other negative sub-centers. Meanwhile, the sub-center with a confusing
similarity to the current sample will be ignored to dispose of the label conflict.
To make it more flexible with unconstrained changes in N , K, and C, we further
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introduce the producing, merging, and dropping operations as shown in Fig. 3.
Sub-centers Producing. Based on the aforementioned design, it can effectively
alleviate the conflict caused by label noise when Mj > N > 1. However, the
unconstrained N makes it difficult to select the appropriate Mj for each class.
To make it more flexible, we introduce the sub-centers producing operation to
automatically align the sub-centers and the actual identity number in each class.
Given N images with label y and assigned to sub-center m with Eq. 9, a new
sub-center Wy,My+m can be generated by:

Wy,My+m =
1

T

N∑
i=1

1{cos(θi,y,m)<µy,m − λ2σy,m}xi, if T > 0, (10)

where T =
∑N

i=1 1{cos(θi,y,m)<µy,m − λ2σy,m}. If T = 0, there is no new sub-
center to be formed. After this, we can progressively produce new sub-center to
house additional identities beyond Mj . It effectively improves intra-class com-
pactness and reduces the conflict caused by unconstrained N and K.
Sub-centers Dropping.As demonstrated by [2, 13], many state-of-the-art meth-
ods are susceptible to the outlier faces (the image number belonging to an iden-
tity is less than 2, N > K ≥ 1). These outlier images are hard to be pushed
close to any corresponding positive sub-center. During the producing process,
outlier images from each sub-center will generate a new sub-center. The drop-
ping operation should remove the sub-center from outlier images but preserve
the sub-center with a valid identity. Considering the standard deviation can not
reflect the density of a distribution, we just leverage µi,mi as the metric. The
condition of dropping can be formulated as :

J (Wi,mi
) = 1{µi,mi

≤ λ3}. (11)

If the µi,mi
is less than λ3, we will ignore these images during the training pro-

cess and then erase the specific sub-center.
Sub-centers Merging. Using sub-centers for each class can dramatically im-
prove the robustness under noise. However, the inter-class discrepancy will be
inevitably affected by inter-class conflict caused by the shared identity between
different sub-centers. SKH [13] sets the same fixed number of sub-centers for
each class, which can not handle complex inter-class conflict with unconstrained
C. Meanwhile, the sub-center strategy undermines the intra-class compactness
as the samples in a clean class also converge to different sub-centers. To deal
with this potential problem, we employ the sub-centers merging operation to
aggregate different W∗,∗. The condition of merging can be formulated as:

J (Wi,mi
,Wj,mj

) = 1{WT
i,mi

Wj,mj
≥ max(µj,mj

+ λ4σj,mj
, µi,mi

+ λ4σi,mi
)},
(12)

where Wi,mi
and Wj,mj

are normalized with L2 manner. According to Eq. (12),
we merge multiple sub-centers satisfying J (∗, ∗) = 1 into a group and combine
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them into a single sub-center as following:

W∗,new =
1

|G|
∑

(p,mp)∈G

Wp,mp
, (13)

where G and |G| indicate the merged group and its sub-center number. Further-
more, images belonging to G will be assigned to a new label (we directly select
the minimum label ID in the G as the target).

3.2 Progressive Training Framework

At the training stage, we perform the sub-centers producing, dropping and merg-
ing operations progressively to effectively alleviate the label conflict cause by
unconstrained N , K, and C. The training framework is summarized in Alg. 1.

Algorithm 1 Evolving Sub-centers Learning

Input: Training data set X , label set Y, total training epoch E, start epoch ε for ESL.
Initialize: Label number C, sub-centers number M∗ and W∗,∗ for each class.
e← 0;
while e < E do

sample data X, Y from X , Y;
compute loss function L(X,Y ) by Eq. (5) and update model;
generating µ∗ and σ∗ for each sub-center;
if e > ε then

for i = 1 to C do
for j = 1 to Mi do

// Producing

computing T via Eq. (10);
if T > 0 then

computing Wi,Mi+j via Eq. (10);

// Dropping

generating J (Wi,j) via Eq. (11);
if J (Wi,j) then

dropping sub-center Wi,j ;
generating Xi as images with label i;
foreach image X in Xi do

computing m via Eq.( 9);
if j = m then

dropping image X;

// Merging

generating vertex set V with each sub-center W in W∗,∗;
generating edge set E with (Wi,Wj) if J (Wi,Wj) = 1 via Eq. (12);
generating graph G =(V , E);
foreach connected component g in G do

generating new sub-center via Eq. (13);
relabeling images belonging to sub-centers in g;

e = e+ 1;
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In this manner, ESL is able to capture the complex distribution of the whole
training data with unconstrained label noise. It tends to automatically adjust
the sub-centers to align the distribution of N , K, and C in the given datasets.
This allows it to be flexible in solving the real-world noise while preventing the
network from damaging the inter-class discrepancy on clean faces.

3.3 Robustness Analysis on Fine-grained Noisy Faces

When applied to the practical N-identities|KC-clusters faces, the key challenge
is to process different combinations of N , K, and C. In Tab. 1, we have analyzed
the noise type in different combinations of N , K, and C. Now we investigate the
robustness of ESL on fine-grained noisy faces.

To simplify the analysis, we first only consider the circumstance when C = 0.
(1) N = K = 1,C = 0. This phenomenon indicates the training dataset is abso-
lutely clean. In this manner, most of the feature learning strategies can perform
excellent accuracy. However, introducing the sub-centers for each class will dam-
age the intra-class compactness and degrade the performance. The sub-centers
merging allows ESL to progressively aggregate the sub-centers via Eq. (12) to
maintain the intra-class compactness. (2) N = K > 1,C = 0. This means there
are several identities existing in a specific class. N = K represents the images for
each identity are enough to form a valid cluster in the latent space and there are
no outlier images. Under this manner, with appropriate hyper-parameter, the
state-of-the-art methods Sub-center ArcFace [2] and SKH [13] can effectively
cope with this label conflict. However, the unconstrained N and K still make
them ineffective even with some performance gains. In ESL, the sub-centers pro-
ducing via Eq. (10) adaptively produce new sub-centers to accommodate the
external identities beyond the initialized sub-center number if there are fewer
sub-centers than identities in the class. If the number of sub-centers is larger
than the identity number, the merging strategy will merge clusters with the
same identity to keep the intra-class compactness. (3) N > K > 1,C = 0. Be-
sides the conflict clusters, several identities can not converge to valid clusters in
the latent space. We find that this is caused by the few-shot samples in each
identity. It lacks intra-class diversity, which prevents the network from effec-
tive optimization and leads to the collapse of the feature dimension. To deal
with these indiscoverable outliers, we design the sub-centers dropping operation
to discard these sub-centers with few samples or slack intra-class compactness
based on Eq. 11 in ESL. This is based on our observation that these sub-centers
are not dominated by any one identity. Multiple outliers try to compete for
the dominance, leading to bad compactness. (4) N > K = 1,C = 0. It indicates
that there is one valid identity and several outlier images in this class. ESL will
enable the dropping strategy to remove the noise images and keep valid faces.
(5) N > K = 0,C = 0. It indicates each identity in the class only owns few-shot
samples. We proposed dropping operation will discard all the sub-centers in this
class. For C > 0, there are multiple clusters with the same identity but differ-
ent labels. This introduces the inter-class conflict. The state-of-the-art method
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Table 2. Comparison with other noise-robust learning strategies under different types
of noise. + indicates the method can solve the noise under the specific setting. +++
indicates the method can solve the noise problem. − indicates the method can not
handle the problem.

Method C N = K = 1 N = K > 1 N > K > 1 N > 1 ≥ K

ArcFace [4]
C = 0 +++ - - -
C > 0 - - - -

NT [10]
C = 0 +++ - + +
C > 0 - - - -

NR [32]
C = 0 +++ - + +
C > 0 - - - -

Sub-center [2]
C = 0 + + + +
C > 0 - - - -

SKH [13]
C = 0 + + + +
C > 0 + + + +

ESL
C = 0 +++ +++ +++ +++
C > 0 +++ +++ +++ +++

SKH [13] can not perform well under unconstrained C. For this potential con-
flict, Eq. (12) in ESL can also accurately alleviate this by dynamically adjusting
the label of images belonging to the merged sub-centers.

3.4 Comparison with Other Noise-robust Learning Strategies

The main difference between the proposed ESL and other methods [2, 13, 10,
32, 4] is that ESL is less affected by the unconstrained N , K, and C from the
real-world noise. It’s more flexible to face recognition under different types of
noise while keeping extreme simplicity, only adding three sub-centers operation.
To better demonstrate this, we make a detailed comparison with other methods
under fine-grained noisy faces as shown in Tab. 2. The superiority of our method
is mainly due to the flexible sub-center evolving strategy, which can handle
variant intra-class noise and inter-class noise simultaneously.

4 Experiments

4.1 Experimental Settings

Datasets. MS1MV0 [8] and MS1MV3 [5] are popular academic face recognition
datasets. MS1MV0 [8] is raw data that is collected from the search engine based
on a name list, in which there is around 50% noise. MS1MV3 [5] is the cleaned
version of MS1MV0 [8] by a semi-automatic pipeline. To further explore the
effectiveness of our proposed ESL, we also elaborately construct synthetic noisy
datasets. We establish intra-conflict, inter-class conflict, and mixture conflict
noisy datasets, which will be detailed introduced in the supplementary material.
As for the performance evaluation, we tackle the True Accept Rate (TAR) at a
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Table 3. Experiments of different settings on MS1MV0 and synthetic mixture noisy
dataset comparing with state-of-the-art methods.

Method Dataset
IJB-B IJB-C

1e−3 1e−4 1e−5 1e−3 1e−4 1e−5
ArcFace [4] MS1MV0 93.27 87.87 74.74 94.59 90.27 81.11
Sub-center ArcFace M=3 [2] MS1MV0 94.88 91.70 85.62 95.98 93.72 90.59
Co-ming [27] MS1MV0 94.99 91.80 85.57 95.95 93.82 90.71
NT [10] MS1MV0 94.79 91.57 85.56 95.86 93.65 90.48
NR [32] MS1MV0 94.77 91.58 85.53 95.88 93.60 90.41
SKH + ArcFace M=3 [13] MS1MV0 95.89 93.50 89.34 96.85 95.25 93.00

ESL + ArcFace MS1MV0 96.61 94.60 91.15 97.58 96.23 94.24

ArcFace [4] Mixture of Noises 93.17 87.54 74.02 94.99 90.03 82.40
Sub-center ArcFace M=3 [2] Mixture of Noises 92.83 86.80 73.11 94.20 89.32 81.43
SKH + ArcFace M=4 [13] Mixture of Noises 95.76 93.62 89.18 96.89 95.16 92.71

ESL + ArcFace Mixture of Noises 96.48 94.51 90.95 97.62 96.22 93.60

specific False Accept Rate (FAR) as the metric. We mainly consider the perfor-
mance on IJB-B [29] dataset and IJB-C [17] dataset. Moreover, we also report
the results on LFW [11], CFP-FP [21] and AgeDB-30 [18].
Implementation Details. Following ArcFace [4], we generate aligned faces
with RetinaFace [3] and resize images to (112× 112). We employ ResNet-50 [9]
as backbone network to extract 512-D feature embedding. For the experiments
in our paper, we initialize the learning rate with 0.1 and divide it by 10 at 100K,
160K, and 220K iteration. The total training iteration number is set as 240K.
We adopt an SGD optimizer, then set momentum as 0.9 and weight decay as
5e-4. The model is trained on 8 NVIDIA A100 GPUs with a total batch size of
512. The experiments are implemented with Pytorch [19] framework. For exper-
iments on ESL, we set the initial number of sub-centers for each class as 3. The
λ1, λ2, λ3 and λ4 is separately set as 2, 2, 0.25, and 3.

4.2 Comparison with State-of-the-art

We conduct extensive experiments to investigate our proposed Evolving Sub-
centers Learning. In Table. 3, we compare ESL with state-of-the-art methods on
both real-word noisy dataset MS1MV0 [8] and the synthetic mixture of noise
dataset. Without special instructions, the noise ratio is 50%.

When training on noisy data, ArcFace has an obvious performance drop. It
demonstrates that noise samples would do dramatically harm to the optimization
process. ESL can easily outperform current methods by an obvious margin. To
be specific, ESL can outperform Sub-center ArcFace [2] by 2.51% and SKH [13]
by 0.98% on IJB-C dataset. On the synthetic mixture noisy dataset, we make a
grid search of the sub-center number in Sub-center ArcFace [2] and SKH [13].
Sub-center ArcFace [2] achieves the best performance when M=3 and SKH [13]
achieves the best performance when M=4. ESL can easily outperform Sub-center
ArcFace [2] by 6.9% and SKH [13] by 1.06% on IJB-C dataset. Our proposed
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Table 4. Ablation experiments to explore the hyperparameters.

λ1(Eq. (5)) λ2(Eq. (10)) λ3(Eq. (11)) λ4(Eq. (12)) Mj(Eq. (5)) TAR@FAR=-4

2 2 0.25 3 3 96.22

1 2 0.25 3 3 95.73
3 2 0.25 3 3 95.88

2 1 0.25 3 3 96.11
2 3 0.25 3 3 95.89

2 2 0.2 3 3 96.05
2 2 0.3 3 3 96.18

2 2 0.25 1 3 95.07
2 2 0.25 2 3 95.82

2 2 0.25 3 1 96.03
2 2 0.25 3 2 96.14
2 2 0.25 3 4 96.20
2 2 0.25 3 5 96.19

Table 5. Ablation experiments to verify the effectiveness of proposed operations.

ArcFace
class-specific

Merging Producing Dropping Dataset
IJB-C

sub-center 1e−3 1e−4 1e−5
✓ ✗ ✗ ✗ ✗ Mixture of Noises 94.99 90.03 82.40
✓ ✓ ✗ ✗ ✗ Mixture of Noises 95.35 93.76 90.88
✓ ✓ ✓ ✗ ✗ Mixture of Noises 96.02 94.51 92.14
✓ ✓ ✓ ✓ ✗ Mixture of Noises 97.23 95.54 92.98
✓ ✓ ✓ ✓ ✓ Mixture of Noises 97.62 96.22 93.60

ESL can handle the fine-grained intra-class conflict and inter-class conflict under
unconstrained N , K, and C, which brings significant performance improvement.

4.3 Ablation Study

Exploration on Hyperparameters. The hyperparameters in our proposed
ESL contain the initial sub-center number for each class and the λ in each
proposed operation. In Tab. 4, we investigate the impact of each hyperparameter.

Effectiveness of Proposed Operations. To demonstrate the effectiveness of
our proposed ESL, we decouple each operation to ablate each of them on the
mixture noisy dataset in Tab. 5.

We take turns adding each component to the original ArcFace [4] base-
line. Due to the gradient conflict from massive fine-grained intra-class noise
and inter-class noise, ArcFace [4] only achieves limited performance. Sub-center
loss introduces sub-centers for each identity to deal with the intra-class conflict.
Meanwhile, the ignore strategy can ease part of conflict from inter-class noise.
Sub-center loss brings 3.73% performance improvement. The merging operation
aims to merge images that share the same identity but belong to different sub-
centers. The merging operation boosts the performance by 0.75%. The producing
operation can automatically align the sub-centers and the actual identity num-
ber in each class, which improves intra-class compactness effectively. It further
brings 1.03% performance improvement. The dropping operation tends to drop
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Table 6. Ablation experiments to compare ESL with posterior cleaning methods. The
GPU hour is measured on NVIDIA A100 GPU. M=n ↓ 1 indicates the posterior data
clean strategy proposed in Sub-center Arcface [2].

Method Dataset Posterior Clean GPU Hour
IJB-C

1e−3 1e−4 1e−5
Sub-center ArcFace M=3 ↓ 1 MS1MV0 ✓ 128 97.40 95.92 94.03
SKH + ArcFace M=3 ↓ 1 MS1MV0 ✓ 128 96.55 96.26 94.18
ESL + ArcFace MS1MV0 ✗ 80 97.58 96.23 94.24

ArcFace MS1MV3 ✗ 64 97.64 96.44 94.66

Sub-center ArcFace M=3 ↓ 1 Mixture of Noises ✓ 128 97.13 95.89 92.67
SKH + ArcFace M=4 ↓ 1 Mixture of Noises ✓ 128 97.46 96.14 92.87
ESL + ArcFace Mixture of Noises ✗ 80 97.62 96.22 93.60

the outlier faces without the specific positive sub-center. These faces are hard to
optimize and would harm the optimization process. It can obtain a significant
performance gain by 0.68% under the fine-grained noisy dataset.
Efficiency of ESL. Deng et al. [2] and Liu et al. [13] adopt a posterior data
clean strategy to filter out noise samples in an offline manner. Deng et al. [2]
searches for the intra-class margin to drop the outlier samples for each domain
center. Liu et al.[13] further introduces inter-class margin to merge samples be-
longing to different centers. For each margin setting, they should train for 20
epochs to verify its effectiveness, which is extremely time and computation re-
sources consuming. In Table. 6, we compare ESL with these posterior cleaning
strategies. ESL can also achieve better performance on both MS1MV0 [8] and
synthetic mixture noisy dataset. Meanwhile, there is only a slight gap between
ESL and ArcFace [4] training on cleaned MS1MV3.
Robustness under Various Noise Ratio. To further investigate the effec-
tiveness of our proposed ESL, we conduct sufficient experiments under various
noise ratios. As shown in Fig. 4, we visualize the relationship between noise ra-
tio and evaluation results. ESL can remain robustness under different noise ratio
and surpass Sub-center ArcFace [2] and SKH [13] by a large margin.

Fig. 4. Experiments of ArcFace, Sub-center ArcFace, SKH and ESL on different noise
ratio. We tackle the TAR@FAR=-4 on IJB-C dataset as evaluation metric.

In Table. 7, we also compare our proposed ESL with other methods on the
cleaned MS1MV3 dataset. Samples in a clean class would converge to different
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Table 7. Experiments on cleaned MS1MV3 dataset. For IJB-B and IJB-C dataset, we
adopt the TPR@FPR=−4 as evaluation metric.

Method Dataset IJB-B IJB-C LFW CFP-FP AgeDB-30

ArcFace MS1MV3 95.04 96.44 99.83 98.57 98.12

Sub-center ArcFace M=3 MS1MV3 94.84 96.35 99.75 98.50 98.14
Sub-center ArcFace M=3 ↓ 1 MS1MV3 94.87 96.43 99.78 98.52 98.19
SKH + ArcFace M=3 MS1MV3 93.50 95.25 99.78 98.59 98.23
SKH + ArcFace M=3 ↓ 1 MS1MV3 94.98 96.48 99.77 98.70 98.25
ESL + ArcFace MS1MV3 95.12 96.50 99.80 98.72 98.43

Table 8. Experiments on CosFace loss function.

Method Dataset
IJB-B IJB-C

1e−3 1e−4 1e−5 1e−3 1e−4 1e−5
CosFace Mixture of Noises 93.44 86.87 74.20 95.15 90.56 83.01
Sub-center CosFace M=3 Mixture of Noises 91.85 84.40 69.88 94.25 89.19 80.25
SKH + CosFace M=4 Mixture of Noises 95.07 93.15 87.13 96.28 94.46 91.87
ESL + CosFace Mixture of Noises 96.52 94.64 88.93 97.50 96.10 93.51

sub-centers so that the performance of Sub-center ArcFace [2] slightly drops.
SKH [13] leads to a significant performance drop when directly training on the
cleaned dataset. The restraint of SKH [13] forces each hyperplane to contain a
subset of all IDs in the cleaned dataset, which does great harm to the inter-class
representation learning. Compare with Sub-center ArcFace [2] and SKH [13], our
proposed ESL can further boost the performance on the cleaned dataset, which
further verifies the generalization of ESL.
Generalization on Other Loss Function. We also verify the generalization
ability of proposed ESL on CosFace [26], which is another popular loss function
for deep face recognition. In Tabel. 8, we can observe that ESL can significantly
outperform Sub-center [2] and SKH [13] by a large margin.

5 Conclusions

In this paper, We reformulate the noise type of faces in each class into a more
fine-grained manner as N-identities|KC-clusters. The key to robust representa-
tion learning strategies under real-world noise is the flexibility of the algorithm
to the variation of N , K, and C. Furthermore, we introduce a general flexible
method, named Evolving Sub-centers Learning (ESL), to improve the robust-
ness of feature representation on noisy training data. The proposed ESL enjoys
scalability to different combinations of N , K, and C, which is more robust to
unconstrained real-world noise. Extensive experiments on noisy data training
demonstrate the effectiveness of ESL and it provides a new state-of-the-art for
noise-robust representation learning on large-scale noisy faces.
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