A Additional Ablation Studies

LSR can be optionally applied on the student's one-hot ground truth labels. However, we observed that this did not provide performance gain, so we did not include it in our final design. Table 1 provides additional ablation study of the effect of LSR on the performance. As can be seen, although LSR alone improves performance, its effect is not significant in our framework.

MT	U	LSR	SLS	Acc_i	Acc
×	×	×	×	71.80	75.12
Х	\times		×	72.45	81.81
Х	\times	×		80.93	85.33
	\times		×	81.78	85.16
	×	×	\checkmark	82.56	86.82
			×	81.94	85.43
		×	\checkmark	83.18	86.94
	\checkmark		\checkmark	82.01	86.82

Table 1: Accuracy of the different components of our model with and without LSR in RAF-DB with 30% symmetric noise.

In Section 4.3 of the paper, we show ablation studies for RAF-DB with 30% symmetric noise. In Tables 2 and 3 we report more results for asymmetric noise and other noise rates. Please refer to Section 4.3 for more details.

MT	U	SLS	Sym (50%)	Sym (70%)	Asym (30%)
×	×	×	62.71	47.78	70.50
	×	×	77.54	62.61	81.61
×		×	76.33	62.71	79.40
×	×		75.78	57.50	80.90
		×	78.52	63.13	81.61
	×		78.98	66.19	81.84
			80.44	71.77	82.69

Table 2: Accuracy of the different components of our model with 50% symmetric noise, 70% symmetric noise, and 30% asymmetric noise in RAF-DB.

B Numerical Results Comparing with SOTA Methods

In Section 4.4 of the paper, we plot the comparison results between SOFT and the state-of-the-art methods with different rates of symmetric (Fig. 4) and asymmetric (Fig. 5(a)) noise. Here, we provide the numerical results in Table 4 for symmetric noise and in Table 5 for asymmetric noise. Please refer to Section 4.4 for the analysis of the results.

Smooth method	Teacher	Ins-aware	Non-zero	Sym (50%)	Sym (70%)	Asym (30%)
×	×	Х	×	78.52	63.13	81.6
LSR	×	×	×	78.74	61.93	81.84
LSR^*		×	×	78.91	64.76	81.84
SLS(0)			×	80.18	70.57	81.91
SLS		\checkmark	\checkmark	80.44	71.77	82.69

Table 3: The effects of different design components for SLS with 50% symmetric noise, 70% symmetric noise, and 30% asymmetric noise in RAF-DB.

Method	Noise(%)	RAF-DB	AffectNet
Baseline	10	$80.43 {\pm} 0.72$	$57.21 {\pm} 0.31$
SCN[2]	10	$81.92 {\pm} 0.69$	$58.48 {\pm} 0.62$
DMUE[1]	10	$83.19 {\pm} 0.83$	$61.21 {\pm} 0.36$
SOFT	10	$88.93{\pm}0.13$	$61.31{\pm}0.08$
Baseline	20	$78.01 {\pm} 0.29$	56.21 ± 0.31
SCN[2]	20	$80.02 {\pm} 0.32$	$56.98 {\pm} 0.28$
DMUE[1]	20	$81.02 {\pm} 0.69$	$59.06 {\pm} 0.34$
SOFT	20	$88.09{\pm}0.06$	$60.99{\pm}0.17$
Baseline	30	$75.12 {\pm} 0.78$	52.67 ± 0.45
SCN[2]	30	$77.46 {\pm} 0.64$	$55.04 {\pm} 0.54$
DMUE[1]	30	$79.41 {\pm} 0.74$	$56.88 {\pm} 0.56$
SOFT	30	$86.94{\pm}0.21$	$59.64{\pm}0.06$
Baseline	50	$62.71 {\pm} 0.45$	51.29 ± 0.36
SCN[2]	50	$71.54{\pm}0.67$	$43.09 {\pm} 0.58$
DMUE[1]	50	$72.43 {\pm} 0.74$	56.06 ± 0.49
SOFT	50	$80.44{\pm}0.17$	$57.27 {\pm} 0.22$
Baseline	70	$47.78 {\pm} 0.47$	$43.76 {\pm} 0.89$
SCN[2]	70	44.95 ± 1.49	-
DMUE[1]	70	$45.27 {\pm} 0.64$	-
SOFT	70	$71.77{\pm}0.18$	$49.00{\pm}0.10$

Table 4: Accuracy on RAF-DB and AffectNet with injected symmetrical noise.

Method	10%	20%	30%	40%	50%
DMUE[1]	74.35±0.42	$73.44{\pm}0.34$	65.06 ± 0.46	52.48 ± 0.52	$\substack{41.81 \pm 0.57 \\ \textbf{49.39} \pm \textbf{0.23}}$
SOFT	87.54±0.09	85.56 ${\pm}0.19$	82.69 ± 0.18	69.17 ± 0.21	

Table 5: Accuracy on RAF-DB with different rates of injected asymmetric noise. SOFT consistently beats the current state-of-the-art, DMUE.

References

- 1. She, J., Hu, Y., Shi, H., Wang, J., Shen, Q., Mei, T.: Dive into ambiguity: Latent distribution mining and pairwise uncertainty estimation for facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6248–6257 (2021)
- Pattern Recognition. pp. 6248–6257 (2021)
 Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6897–6906 (2020)