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Abstract. Data cleaning, architecture, and loss function design are im-
portant factors contributing to high-performance face recognition. Previ-
ously, the research community tries to improve the performance of each
single aspect but failed to present a unified solution on the joint search
of the optimal designs for all three aspects. In this paper, we for the
first time identify that these aspects are tightly coupled to each other.
Optimizing the design of each aspect actually greatly limits the perfor-
mance and biases the algorithmic design. Specifically, we find that the
optimal model architecture or loss function is closely coupled with the
data cleaning. To eliminate the bias of single-aspect research and pro-
vide an overall understanding of the face recognition model design, we
first carefully design the search space for each aspect, then a comprehen-
sive search method is introduced to jointly search optimal data cleaning,
architecture, and loss function design. In our framework, we make the
proposed comprehensive search as flexible as possible, by using an inno-
vative reinforcement learning based approach. Extensive experiments on
million-level face recognition benchmarks demonstrate the effectiveness
of our newly-designed search space for each aspect and the comprehen-
sive search. We outperform expert algorithms developed for each single
research track by large margins. More importantly, we analyze the dif-
ference between our searched optimal design and the independent design
of the single factors. We point out that strong models tend to optimize
with more difficult training datasets and loss functions. Our empirical
study can provide guidance in future research towards more robust face
recognition systems.
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1 Introduction

Large-scale face recognition is a fundamental problem and of great practical value
in computer vision. It is challenging to learn robust feature representations from
million-level datasets. Recently, the vision community has rapidly improved the
performance of face recognition. To a large extent, these advances have been
driven by three aspects: large-scale noisy data cleaning strategies [9, 34, 2, 1, 13],
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Fig. 1: Given a fixed component (referred to the title of each table), we explore
the optimal combinations between the other components (horizontal and vertical
axes of each table). The optimal design of each component actually changes fol-
lowing the modifications of the other two, which suggests that it is sub-optimal
to consider them separately. A, B, C represent different designs for each compo-
nent. And the value is the validation accuracy.

margin-based loss function formulations [6, 28, 17, 31], and proper architecture
designs [4, 38].

Intuitively, large-scale datasets are important for face representation learn-
ing. Along with the development of various large-scale datasets [6, 9, 26, 42, 2,
1], extensive works [26, 5, 30] tried to conduct automatic or semi-automatic data
cleaning to alleviate the influence of noisy data. In addition, learning robust
feature representation with margin-based loss functions [6, 28, 17, 37, 20, 22] can
effectively enhance the representations. The advanced architecture design also
plays an import role for robust face recognition, including many common back-
bones [10, 23, 36, 38] and some specially designed backbones [4, 3].

However, there lacks a unified understanding of optimal designs of all the
three aspects. Previous methods all delved into one aspect while ignoring the
other two, therefore neglecting the coupling between these aspects. For instance,
many loss functions [20, 41, 12] rely on hard sample mining to boost face recog-
nition performance. However, this approach would be quite sensitive to noisy
data. More specifically, many data cleaning methods [42, 6] leverage the sample-
to-class similarity scores to filter out outliers and merge similar classes. They
pre-define a confidence threshold and samples with scores lower than the thresh-
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old are treated as the noise. Obviously, different thresholds would lead to different
loss function designs.

To further evaluate this argument, we conduct extensive experiments to ex-
plore the coupling among these individual research aspects. We randomly select
some combinations of different cleaning strategies, loss function designs, and
backbones. As shown in Figure 1, different combinations lead to significantly
different performances. The optimal design of each component actually changes
following the modifications of the other two. Separate studies greatly limit the
performance and would bias each aspect’s algorithmic design.

To eliminate the bias of single-aspect research and provide an overall under-
standing of the face recognition models, we first propose new design space for
each aspect, then deliberately design a comprehensive search method to jointly
search data cleaning, architectures, and loss function design. Undoubtedly, the
proper design of search space for each aspect will greatly contribute to the com-
prehensive search result. For the data cleaning, we introduce the innovative sam-
ple discriminability-guided data cleaning search strategy to deal with the inter-
and inter-class noise. We consider the relationship between a sample with its
class centroid and the hardest-negative class to determine whether the sample is
a noisy sample or not. It is worth mentioning that the search-based data cleaning
approach can effectively alleviate the problem of tangled judgment on whether
the edge samples are hard positive or noisy samples. We clean the data simply
based on whether the searched cleanup result helps the training model form a
more robust representation and whether it can cooperate well with the design
of the other two aspects. For the loss function design formulation, we follow the
successful margin-based loss function [6, 28, 27], but emphasize the importance
of the scales of positive and negative samples, namely the scale-aware margin-
based loss function design. As for the backbone design, we optimize the width
and depth expansion ratio for the existing base, which have been shown to be
the most important two factors in network design [25].

After carefully designing the search space for each aspect, we conduct the
comprehensive search to jointly optimize them and explore their collaboration
patterns. Obviously, it is hard to simply integrate data cleaning, architectures,
and loss function design together. The main barrier is how to effectively design
and explore such a complex and huge search space. To solve challenge, given
the searchable formulation, we view the comprehensive search as a sequence
prediction and generate their hyper-parameters as a sequence of tokens following
the order of data cleaning −→ loss function design −→ architecture design.
Every prediction is produced by a softmax classifier and then fed into the next
time step as input to influence the generation of the next hyper-parameter. We
adopt a Recurrent Neural Network (RNN) as the controller to explore the search
space. Once the controller RNN finishes generating the data clean strategy, an
architecture, and a loss function, a joint solution based on these components
is built and trained. The parameters of RNN are then optimized to maximize
the expected validation accuracy of the searched components. The proposed
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comprehensive search effectively explores the learning of the coupling between
different components and enables a unified system.

Although some previous works utilize search-based methods for auto loss
function [29, 15] design, to our best knowledge, we are the first to jointly explore
all three research fields and try to understand their entanglement. And our pro-
posed scale-aware margin-based loss function can also surpass them substantially
for the comparison in loss function design alone. Extensive experiments show the
superiority of our newly-proposed search space for each aspect, then the compre-
hensive search will further outperform former expert algorithms developed for
each single research track by large margins. In summary, the main contributions
of this paper can be summarized as follows:

– We identify an ignored problem of face recognition that the data cleaning
strategy, loss function design, and backbone architecture are coupled to each
other. Separate studies on each factor greatly limit their performance.

– We carefully design search space for each aspect and propose the compre-
hensive search method to jointly explore data cleaning strategy, loss function
formulation, and backbone architecture design. We introduce an innovative
reinforcement learning based search framework to carry out the research and
learns a unified system to achieve robust face recognition.

– We conduct extensive experiments on million-level face recognition tasks
and evaluation on various benchmarks, including LFW, SLLFW, CALFW,
CPLFW, IJB-B, and IJB-C. It demonstrates the superiority of our search
space design for each aspect and the huge performance gained from the
integration together by the comprehensive search.

2 Related work

2.1 Deep Face Recognition

The proposal of large-scale noise-control datasets, strong backbone architectures,
and well-designed loss functions have all greatly advanced the face recogni-
tion community. From the initial CASIA-Webface [34] to the recent large-scale
datasets Glint360K [1] and Webface260M [42], these datasets have been pro-
posed to greatly improve the accuracy of face recognition models. However, these
datasets rely on internet search engines and therefore contain a large percentage
of noise. How to deal with these noises and learn face recognition with noisy la-
bels has drawn much attention [41, 33, 5, 42, 16]. Zhu [42] introduces the cleaning
automatically by self-training (CAST) pipeline, which introduces a self-training
process to auto clean inter-class and intra-class noise by an iteration manner
and achieves good performance. For the model design, some architectures have
been proposed to achieve efficient face recognition, such as PolyNet [38] and
MobileFaceNet [4]. For sophisticated face recognition loss function design, effi-
cient margin-based softmax approaches [6, 28, 27, 17, 18] were proposed by mod-
ifying the softmax loss function to achieve tighter intra-class compactness and
more sparse inter-class separation, which achieve state-of-the-art performance.
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Since separate design on each component has achieved good performance, all
the above methods ignore the relationship among data cleaning strategy, loss
function formulation, and training backbone. Disentangled studies greatly limit
performance.

2.2 Auto-ML for Face Recognition

Auto-ML methods aim to automatically design suitable machine learning sys-
tems. Reinforcement learning guided search [43, 24] automate the design pro-
cess and can easily outperform manually designed components in a given search
space. Some former works use the searching methods to optimize the training loss
function for face recognition. Li et al. [15] proposes the auto loss function search
method from a hyper-parameter optimization perspective. Wang et al. [29] de-
velop a unified formulation for the prevalent margin-based softmax loss. Then
the random and reward-guided methods are designed to search for the best can-
didate. The above methods only focus on the loss function search. In this work,
we consider all three aspects for face recognition. We first re-design the search
space for each aspect, then jointly consider them and achieve excellent perfor-
mance.

3 Method

To eliminate the bias of single-aspect research and provide an overall under-
standing of the face recognition model design, we propose the comprehensive
search method to jointly search optimal data cleaning strategy, loss function for-
mulation, and backbone architecture design for robust face recognition. In this
section, we will introduce the details of our comprehensive search. The key com-
ponents of comprehensive search include three aspects, i.e. search space, search
objective, and search algorithms. In the following, we will first introduce our
newly-designed search space for each aspect, then couple them together to form
the comprehensive search space. The search objective to evaluate the searched
solution and the innovative reinforcement learning-based reward-guided com-
prehensive approach to identify the optimal combination design are introduced
consequently.

3.1 Comprehensive Search Space Design

Discriminabiliy-guided data cleaning search strategy. There are two
kinds of data noise for face recognition datasets, the ‘outliers’ and ‘label flips’,
corresponding to intra-class and inter-class noise respectively. An ‘outlier’ noise
means an image does not belong to any class of the datasets. A ‘label flip’ noise
refers to an image that is wrongly labeled with the incorrect class label. To
clean the noise, we conduct inter-class filtering and intra-class merging. As for
the intra-class noise cleaning, we filter the samples by their discriminability [35].
The discriminability is defined as:
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Di =
distip

max {distin | n ∈ [1,K], n ̸= p}
, (1)

where p is the positive class label for sample i and n, n ∈ [1,K], n ̸= p is the neg-
ative class label. K is the number of class. dist represents the feature similarity.
We use the cosine similarity as the similarity indicator here. The discriminabil-
ity is the ratio between the feature’s similarity with the centroid of its class and
the similarity from the hardest-negative class. It can successfully distinguish the
outliers and can be used to filter the samples whose discriminability is lower
than a pre-defined confidence threshold τintra. As for the inter-class noise, we
simply merge a pair of classes whose class center similarity is higher than the
threshold τinter. The τintra and τinter are the two hyper-parameters that we need
to optimize for the data cleaning strategy.

One of the most difficult problems in past manual or semi-automatic data
cleaning pipelines is how to classify edge samples as hard positive or noisy sam-
ples. Many loss functions [20, 22] rely on strategies such as hard sample mining
to further boost performance. However, edge samples are often hard to distin-
guish. By conducting the search-based data cleaning, we have eliminated this
tangle. The result of data cleaning, i.e. whether an edge sample is filtered or
not, only depends on whether the cleanup result ultimately helps the training
model to form a more robust feature representation, or whether it can cooperate
well with the design of the other two aspects.

Scale-aware margin-based loss function design. Margin-based softmax
loss functions [6, 27, 28, 17] have been proposed in recent years to enhance the
feature discrimination for face recognition. In summary, they can be defined
in a uniform formulation. Suppose wk ∈ Rd is the k-th class’s weight (k ∈
{1, 2, . . . ,K}) and K is the number of classes. x ∈ Rd denotes the face feature.
The formulation for the margin-based loss function can be written as follows:

L = − log
espf(m,θwy,x)

espf(m,θwy,x) +
∑K

k ̸=y e
sn cos(θwk,x)

, (2)

where θwk,x is the angle between wk and x. Suppose cos (θwk,x) = wT
k x is the

cosine similarity of the k-th class weight and feature, f
(
m, θwy,x

)
≤ cos

(
θwy,x

)
is the carefully designed margin function and can be summarized into the com-
bined version f

(
m, θwy,x

)
= cos

(
m1θwy,x +m2

)
− m3. m1 and m2 are the

multiplicative and additive angular margin, and m3 is the additive cosine mar-
gin. Previous work [6, 28, 27] has mainly focused on the margin optimization, but
ignored the importance of tuning the positive sample scale sp and the negative
sample scale sn, which control the optimization difficulty of positive and negative
sample. We experimentally prove that face recognition accuracy can be further
hugely improved by optimizating the sp and sn jointly. Overall, m1,m2,m3, sp
and sn are the hyper-parameters we need to search for the loss function.
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Fig. 2: The overall pipeline for our innovative reinforcement learning-based com-
prehensive search for robust face recognition. We design it for the sample-eval-
update loop. Firstly, the RL agent samples a batch of combinations that contains
the hyper-parameters for data cleaning strategy, loss function formulation, and
backbone architecture design. For each sampled combination, we train it on the
target face recognition task to get its accuracy and reward. After that, the agent
will be updated by maximizing the expected reward until converged.

Effective depth and width search for the backbone. Following [25], the
width expansion ratio W and the depth expansion ratio D are the two most
important factors for neural network architecture design, so we utilize those two
factors to search backbone architecture for face recognition. The base model we
selected is modified MobileNet [11], which has been proved successful for face
recognition and its search cost is affordable.

3.2 Comprehensive Search Objective and Algorithm

Joint search with data cleaning strategy, loss function design, and architecture is
not easy to perform due to the complex and huge search space. To enable fast and
flexible comprehensive search, we view the comprehensive search as a sequence
prediction and generate their hyper-parameters as a sequence of tokens follow-
ing the order of data cleaning −→ loss function design −→ architecture

design. Every prediction of each step is produced by a softmax classifier and
then fed into the next time step as input to influence the generation of the next
hyper-parameter. We adopt the Recurrent Neural Network (RNN) as the con-
troller to generate the search parameters. Once the controller has completed the
generation of the data clean strategy, the loss function, and the architecture,
a joint solution based on these components is built and trained. The parame-
ters of RNN are optimized to maximize the expected validation accuracy of the
searched components. The overall searching process can be optimized with the
sample-eval-update loop as shown in Alg. 1 and Figure 2.

To solve the real-world face recognition problem, we test all candidate joint
solutions and use the performance as the search criterion. Another object that
needs to be considered is the computational cost, since we search for the depth
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Algorithm 1 Comprehensive Search

Input: Training set St = {(xi, yi)}ni=1, validation set Sv, total searching epochs T ,
agent policy πθ and its initialized parameter θ0.
for t = 1 to T do do

Sample B combinations of hyper-parameters C1, . . .CB for data cleaning strat-
egy τintra, τinter, loss function formulation m1,m2,m3, sp, sn and backbone archi-
tecture design W and D via RNN sequencely.

Train the combinations C1, . . .CB for one epoch separately on the training set
St = {(xi, yi)}ni=1 with the sampled hyper-parameters.

Evaluate the trained combinations C1, . . .CB on the validation set Sv to get
reward R(C1), . . .R(CB) via Eq. 3.

Update θt by maxEPR(C)
Update πθt+1 = πθt

end for
Output: Final policy πθ

expansion ratio and width expansion ratio for the backbone, we expect the new
backbone to have a similar computational budget with the original backbone.
To this end, we use a weighted product method to approximate Pareto optimal
solutions. The final reward function can be formulated as:

R(C) = ACC(C)×
[
COST(C)

TAR

]α
(3)

where C is the sampled combination of designs of the three aspects, ACC(C)
is the accuracy on real-world face verification task of the sampled combination,
COST(C) is the computation cost (FLOPs) of the combination, TAR is the
target computation cost which we set it to the original backbone, and α is the
weight factor.

Following [24], we use Proximal Policy Optimization (PPO) [21] to optimize
the RL agent to find Pareto optimal solutions for our comprehensive search
problem. For each sampled combination in the search space, we map it to a list
of tokens, which are determined by a sequence of action a1:T from the RL agent
with policy πθ. The overall objective is to maximize the expected reward:

J = EP(a1:T ;m)R(C) (4)

For each sample C, we train it on the target task to get its accuracy ACC(C)
and its computation cost COST(C). We then calculate the reward R(C) using
Eq. 3. After that, the agent with policy πθ will be updated by maximizing the
expected reward in Eq. 4 until the parameter θ converges. Then we will re-train
the top combinations C with the highest R(C) by full train and select the best
combination as our searched results.
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4 Experiment

4.1 Datasets

Training Data. To conduct the comprehensive search for robust face recog-
nition, we use the MS1MV2 [6] as our training set, which contains 5.8 million
face images from 85K identities. To prove the good generation ability of our
comprehensive search, we also experiment on the recently introduced large-scale
dataset Glint360K [1], which contains 17 million images of 360K individuals.
Note that the MS1MV2 and Glint360K are the two largest publicly available
face recognition datasets.

Test Data. During the sample-eval-update loop, we evaluate our combina-
tion on the re-organised MegaFace [14] verification benchmark. After retraining,
we test the final model at most popular face benchmarks including LFW [13],
CALFW [40], SLLFW [8], CPLFW [39], IJB-B [32] and IJB-C [19]. We follow
the unrestricted with labelled outside data protocol [13].

4.2 Implementation Details

Data Processing. All the faces in the training images are detected by Reti-
naFace [7]. Alignment by five landmarks is conducted and the face is cropped to
112×112. Images are normalized by subtracting 127.5 and dividing by 128. For
the data cleaning strategy, we use the ResNet-50 [10] model trained on MS1MV2
to extract feature to conduct intra-class and inter-class cleaning.

Searching. During the searching process, each sampled solution is trained on
the training set and evaluated on the validation set. The weighted accuracy of
TAR@FAR at 10−3, 10−4, 10−5 by 0.5, 0.25 and 0.25 are used as the ACC. After
that, we re-train the top reward solution. We choose the top 20 solutions under
the computation budget and fully train them on the target task and then report
the final performance on popular face benchmarks. A recurrent neural network
(RNN) is utilized as the controller to generate the parameter combination. We
use Adam optimizer with learning rate of 5×10−4 and momentum 0.9 to update
the controller. For the sampled solution’s training, we only train each solution
for one epoch. The search process needs around 1,000 samples to converge and
costs around 37 GPU days (NVIDIA A100, FP16 training).

Retraining. After choosing the top 20 combinations, we fully retrain them. We
use SGD optimizer with weight decay 5 × 10−4 and momentum 0.9. We train
models on 8 NVIDIA GPUs with batch size 1024 for 100K iterations. The initial
learning rate is set to 0.1 and decays by 0.1 at iterations 40K, 60K, and 80K for
MS1MV2. As for Glint360K, we train for batch size 1024 with 150k iterations
totally and learning rate decay at 60k, 90k, and 13k.

4.3 Results
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Table 1: Verification performance (%) of different search space combinations on
the LFW, SLLFW, CALFW, CPLFW, SLLFW, IJB-B and IJB-C benchmarks.
The last row represents the baseline performance, which combines the best pre-
vious hand-crafted design for each track. The training set is MS1MV2.

Search Space
LFW SLLFW CALFW CPLFW

IJB-B IJB-C

Data Loss Backbone 10−5 10−4 10−5 10−4

✓ ✓ ✓ 99.55 98.78 94.75 84.80 85.66 91.46 90.45 93.58

× ✓ ✓ 99.58 98.43 94.15 84.33 83.67 91.20 89.55 93.24

✓ × × 99.43 98.15 94.00 82.48 82.35 90.72 88.47 92.84

× ✓ × 99.52 98.27 94.03 84.30 83.26 90.80 88.88 92.91

× × ✓ 99.35 98.22 94.23 82.78 80.62 90.40 87.92 92.70

× × × 99.43 98.12 94.03 82.30 79.71 90.44 87.29 92.61

Best combination

τintra τinter m1 m2 m3 sp sn D W

0.3 0.62 1.15 0.22 0 40 48 1.47 0.84

0.22 0.76 1.0 0.32 0 40 40 1.22 0.91

0.26 0.62 1.2 0.36 0 32 32 1.47 0.84

Table 2: The best combinations
searched with our comprehensive
search on MS1MV2 dataset.

We test our comprehensive search method on
widely-used face verification benchmarks in-
cluding LFW, SLLFW, CALFW, CPLFW,
IJB-B, and IJB-C. The results are shown
in Table 1. The bold numbers in each col-
umn represent the best results. In Table 1,
the last line represents the baseline results
without any search-based design component.
For the baseline, the training dataset is semi-
automatically cleaned by [6], the loss func-
tion is finely designed margin-based loss function ArcFace [6], and the backbone
architecture is modified MobileNet [11] that is specially designed for face recog-
nition. From the results, we can see that our comprehensive search outperforms
the baseline by a large margin on all test benchmarks, i.e. 0.97% performance
gain for IJB-C at 1e-4 and 3.16% at 1e-5. The huge improvement demonstrates
the great potential of comprehensive search compared to manually design com-
ponents separately. What’s more, the search for each component also boosts the
performance greatly, which shows the excellent and flexible design of our newly-
designed search space for each component and the limitation of hand-crafted
design. From the result of row 1 and rows 3-5 in Table 1, we can also observe
that searching for each component separately may not achieve the best perfor-
mance. If we comprehensively search for all three aspects jointly, we can further
boost the performance significantly. Comparing rows 1 and 2 in Table 1, the
addition of search for data cleaning strategy improves the search result dramat-
ically, which has been ignored in previous searching methods [15, 29]. We show
some combinations of top verification accuracy we searched on MS1MV2 in Ta-
ble 2. The results show a very different design preference of searching from the
previous manual design for each component separately.
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Fig. 3: Visualization of the accuracy on validation set along the search process.
Left: The accuracy for searching backbone architecture only. Right: The accu-
racy for comprehensive search. The yellow line represents the moving average of
all sampled combinations, and the red dot line indicates the baseline.

4.4 Searching Process

We visualize the searching process in Figure 3. The yellow line represents the
moving average of the accuracy of the sampled solution. From the figure, we
can observe that the validation accuracy has been improved gradually through
the searching, which suggests that the agent has learned a robust policy that
can sample high-quality hyper-parameter combinations. We also compare the
searching process for comprehensive search and backbone architecture search
in Figure 3. From the figure, we can also see that by enhancing with flexible
data cleaning strategy and loss function formulation searching, the validation
accuracy of sampled combination has been improved greatly, which confirms the
validity of our comprehensive search. In addition, all the rewards of comprehen-
sive and backbone search outperform the baseline combination (represented by
the red dot line), which shows the effectiveness of searching.

4.5 Ablation study

Effect of discriminabiliy-guided data cleaning strategy. For the data
cleaning strategy, we propose the discriminabiliy-guided data intra-class filter-
ing and inter-class merging according to class center similarity to determine
‘outlier‘ and ‘label flip‘ samples respectively. From the results of rows 3 and 6
in Table 1, we can observe that only searching for data cleaning strategy can
outperform baseline whose dataset is semi-automatically cleaned hugely, and
achieve performance gains of 1.18% at 10−5 on IJB-C and 2.64% at 10−5 on
IJB-B benchmark. Note that the result is customized, as we have stated before,
the best candidate for cleaning hyper-parameters is highly related to the loss
function formulation and backbone architecture design.
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Table 4: Verification performance (%) of different search space combinations on
LFW, SLLFW, CALFW, CPLFW, SLLFW, IJB-B and IJB-C benchmarks. The
last row represents the baseline performance, which combines the best previous
hand-crafted design for each track. The training set is Glint360K.

Search Space
LFW SLLFW CALFW CPLFW

IJB-B IJB-C

Data Loss Backbone 10−5 10−4 10−5 10−4

✓ ✓ ✓ 99.63 98.75 94.28 86.20 86.06 92.55 90.06 94.36

× × ✓ 99.38 98.11 94.07 85.10 80.96 91.13 86.68 93.25

× × × 99.34 98.05 93.83 84.35 79.83 90.92 86.33 93.16

Train Dataset
IJB-C

10−5 10−4

MS1MV2 88.80 92.88

Glint360K 88.84 92.92

Table 3: Results of
different feature ex-
tracted model.

Effect of cleaning feature extraction model. In the
cleaning process, we rely on the feature extracted by a
pre-trained model to calculate discriminabiliy and inter-
class similarity. Intuitively, the more discriminate features
would lead to better cleaning accuracy. We conduct an ab-
lation study to study the influence. We use the ResNet-50
backbone trained on MS1MV2 and Glint360K to extract
features and the results are shown in Table 3. The better
features would lead to better cleaning accuracy, but the impact is quite limited.

Effect of scale-aware margin-based loss function. For the loss function
design, we formulate it as the scale-aware margin-based loss function. The results
of rows 4 and 6 in Table 1 demonstrate that the search of loss function can
improve the performance significantly compared to the widely used hand-crafted
design loss ArcFace, i.e. 1.59% gain at IJB-C 10−5. Furthermore, compared to
the other two components data and backbone, the separate searching of loss
achieves the largest improvement, which demonstrates that sophisticated loss
function design is crucial for learning discriminate feature representation.

Effect of depth and width search. For backbone architecture design, we
only search for the width expansion ratio W and the depth expansion ratio D.
We constrain the new backbone to share the same FLOPs with the base model.
From Table 1 rows 5 and 6, the simple width and depth search can still boost
performance, which indicates the limitation of hand-crafted backbone design.

4.6 Search on Glint360K

To show the good generalizability of our comprehensive search, we also conduct
experiments on the newly introduced large-scale dataset Glint360K [1]. The re-
sults are shown in Table 4. From the table, we can see that the comprehensive
search improves the performance significantly on all face benchmarks, which
demonstrates good generalizability. Our solution improves 3.73% at 10−5 for
IJB-C and 6.23% at 10−5 for IJB-B respectively. The main reason is that our
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Table 5: Verification performance (%)
of dataset transferability experiment on
IJB-B and IJB-C.

Search on Train on
IJB-B IJB-C

10−5 10−4 10−5 10−4

Glint360K MS1MV2 84.26 91.12 89.41 93.18

MS1MV2 MS1MV2 85.66 91.46 90.45 93.58

- MS1MV2 79.71 90.44 87.29 92.61

Table 6: Verification performance (%)
of comprehensive search for ResNet50
on IJB-B and IJB-C benchmarks with
MS1MV2. The last row represents the
baseline performance.

Transfer IJB-B IJB-C

Data Loss 10−5 10−4 10−5 10−4

✓ ✓ 90.11 94.55 94.11 96.04

× × 89.11 94.24 93.68 95.76

proposed comprehensive search can effectively capture the intrinsic connections
among the different aspects and find the best combinations. Moreover, the best
combinations in Glint360K of the three aspects are different from the results
searched on MS1MV2, which validates our observation that the three aspects
are coupled to each other.

4.7 Transferability

Since the three aspects are highly related and the best combination would be
changed for different training datasets, we explore the transferability of our com-
prehensive search in this subsection. We use the best combination searched on
Glint360K to train models on MS1MV2. Results are shown in Table 5. The re-
sults show that even the transfer learning reduces performance gains, we still
achieve significant performance improvements compared to the baseline. The re-
sult also suggests that it is better to search and test with the same dataset and
the best candidate of one component would be changed along with the other
two.

4.8 Search with larger backbone

In the above experiments, we have performed the search based on the modi-
fied MobileNet whose FLOPs is around 0.33G. In this section, we perform a
joint search based on ResNet50 whose FLOPs is around 6G. We search for data
cleaning strategy and loss function, and the results are shown in Table 6. The
performance improvement verifies the generalization of our joint search.

4.9 Discussion

In order to explore the intrinsic relationship among these three aspects, we anal-
yse the results of the search to find the best combination pattern. To facilitate
the analysis, we defined the difficulty of the data and the difficulty of the loss
function separately. For data cleaning, a lower τintra as well as a higher τinter
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Fig. 4: Visualization of best matches among data difficult, loss difficult and back-
bone computational complexity (FLOPs).

implies greater training difficulty. For loss function, stricter margins and larger
Sn/Sp imply more difficult optimizations. They are defined as follows,

Difficultydata = 1− τintra + τinter

Difficultyloss =
sn ∗ (m1 − 1 + m2 +m3)

sp

(5)

We visualize the relationship between data difficulty, loss difficulty, and back-
bone architecture in Figure 4. In Figure (4a) and (4b), larger models (higher
FLOPs) tend to train with greater data difficulty and loss difficulty. A larger
model implies a stronger fitting ability and is, therefore, able to handle more
complex optimization problems. So it can learn more from difficult samples and
strict optimization objectives. For the best matching of loss function and data
cleaning, as Figure (4c) suggests, models tend to choose easier optimization loss
functions under severe data. These findings provide a fresh perspective for the
design of face recognition pipeline.

5 Conclusion

In this work, we explore the relationship among the data cleaning strategy, loss
function formulation, and backbone architecture design for robust face recogni-
tion. Previously, people optimize them separately but fail to present a unified
understanding of integrating them. We provide a fresh perspective, coupling
them and optimizing jointly. We propose an innovative reinforcement learning-
based comprehensive search for the best combination. Extensive experiments
have proven the excellence of our method for robust face recognition.
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