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This document supplements the paper entitled “Face2Faceρ: Real-Time High-
Resolution One-Shot Face Reenactment”. Specifically, we provide additional
comparison results in Sec. 1, give detailed information about the network ar-
chitectures in Sec. 2, and present more high-resolution results in Sec. 3.

1 More comparison results

We provide some additional comparison results in this section.
Comparisons under similar complexity. To evaluate the performances of

the six baseline methods under similar computational complexity (i.e., measured
by MACs) to Face2Faceρ, we reduce the minimum and the maximum number
of channels in their generators to match our framework. The modified channel
configurations are as follows:

– FS-VID2VID∗: from 32 and 1024 to 8 and 64,
– Bi-layer∗: from 32 and 256 to 16 and 128,
– LPD∗: from 64 and 512 to 16 and 128,
– FOMM∗: from 64 and 512 to 12 and 64,
– MRAA∗: from 64 and 512 to 12 and 64,
– HeadGAN∗: from 32 and 512 to 6 and 96.

The complexity of the modified methods is shown in Tab. 1. By observing
the qualitative and quantitative comparison results in Fig. 1 and Tab. 2, the
performances deteriorate greatly after reducing the capacity of their generators,
which indicates none of the current state-of-the-art one-shot approaches can be
successfully adapted to meet the requirements of real-time applications.

Comparisons with other one-shot methods. We also acknowledge other
state-of-the-art one-shot face reenactment methods, i.e., MarioNetTe [1], AAN
[7], LSR [3] and FVTH [6], but do not compare to them extensively in the
main paper due to the unavailability of the source code. Here, we provide a
small-scale qualitative comparison with these methods. Specifically, the results
of MarioNetTe [1], AAN [7], LSR [3] are taken from the respective papers. Since
an online pose editing demo is available for FVTH [6], we compare against FVTH
on the head pose editing task. As shown in Figs. 2 to 5, Face2Faceρ can produce
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FS-VID2VID* Bi-layer* LPD* FOMM* MRAA* HeadGAN* Face2FaceρSource Driving

Fig. 1. Qualitative comparisons with the modified baselines, on the task of reenact-
ment.

results with equal or better visual quality to MarioNetTe, AAN, LSR and FVTH.
Note that the online demo of FVTH only supports modifying the Euler angles of
the head pose up to 30◦. In contrast, Face2Faceρ can support even larger head
pose modification without any noticeable artifacts.

It is worth noting that, none of these methods can achieve real-time perfor-
mance like Face2Faceρ. Specifically, the architectures of MarioNetTe, AAN, and
FVTH are similar to FOMM while the architecture of LSR is similar to LPD,
it can be assumed that their complexities are also at the same levels. We refer
readers to Table 1 in the main paper for the complexity of FOMM and LPD.

Comparison with a many-shot method. Besides, we also make a com-
parison against one of the state-of-the-art many-shot face reenactment methods,
i.e., Neural Voice Puppetry (NVP) [5]. The results are illustrated in Fig. 6, from
which we can see that the results generated by Face2Faceρ are comparable to
those synthesized by NVP when high-quality inputs (i.e., articulate neutral faces
under a frontal view) are given.

Ablation study about the loss function. Finally, we conducted another
ablation study to assess the significance of each loss term in Eq. 1 of our main
paper. As can be seen in Tab. 3, the complete loss function outperforms all vari-
ations when one of the loss terms is removed. In terms of scores, we observe that
the reconstruction loss Lr

G and warping loss Lw
G are two essential components

of our loss function which give the fundamental constraints in face reenactment.
From the qualitative comparison results in Fig. 8, we can see that the adversarial
loss Ladv

G is effective at increasing the photo-realism of the generated results. The

use of feature matching loss Lfm
G can stabilize the training to eliminate artifacts

in the generated results (e.g., the first row of Fig. 8).
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Table 1. Complexity comparisons with the modified state-of-the-art methods. The in-
ference time (Inf.) and GPU memory (Mem.) are measured on an Nvidia GeForce RTX
2080Ti GPU with FP32 and FP16 mode respectively. The “-” indicates unmeasurable,
due to not supporting FP16 mode.

Method

256×256 512×512 1024×1024
MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

FS-VID2VID∗ 1.9 10.3/- 0.8/- 7.5 23.2/- 0.9/- 30.1 55.7/- 1.4/-
Bi-layer∗ 1.5 3.6/3.3 0.9/0.8 6.0 5.5/4.7 1.0/0.9 24.0 16.7/13.9 1.1/0.9
LPD∗ 2.3 6.8/6.7 0.9/0.8 9.2 10.2/9.6 0.9/0.9 36.8 26.8/19.0 1.4/1.2

FOMM∗ 2.3 5.9/- 1.0/- 9.2 11.8/- 1.0/- 37.2 28.9/- 1.4/-
MRAA∗ 2.3 6.5/- 1.0/- 9.4 12.7/- 1.0/- 37.6 34.7/- 1.4/-

HeadGAN∗ 1.8 4.0/3.6 0.8/0.8 8.0 11.0/9.5 0.9/0.9 32.1 29.3/19.0 1.3/1.2
Face2Faceρ 1.9 5.3/4.8 0.9/0.9 9.2 10.9/9.5 1.0/0.9 37.0 27.1/18.9 1.4/1.2

Method

1440×1440 1536×1536 2048×2048
MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

MACs↓
×109

Inf.(ms)↓
FP32/FP16

Mem.(GB)↓
FP32/FP16

FS-VID2VID∗ 58.6 95.2/- 1.8/- 66.6 106.0/- 1.9/- 118.4 169.1/- 2.6/-
Bi-layer∗ 48.4 36.8/28.6 1.4/1.2 54.0 39.4/30.6 1.5/1.3 96.0 68.5/53.0 2.0/1.7
LPD∗ 71.0 50.9/33.6 1.8/1.6 80.9 55.0/36.4 2.0/1.8 143.8 94.7/63.6 2.7/2.4

FOMM∗ 73.4 58.2/- 1.8/- 83.6 62.3/- 2.0/- 148.6 106.8/- 2.7/-
MRAA∗ 74.2 64.4/- 1.8/- 84.5 70.8/- 2.0/- 150.2 120.0/- 2.7/-

HeadGAN∗ 63.5 57.3/35.7 1.8/1.5 72.3 60.6/37.6 1.9/1.8 128.5 101.3/62.1 2.6/2.4
Face2Faceρ 71.8 52.1/32.5 1.8/1.6 82.8 56.7/34.8 2.0/1.8 146.2 95.8/60.2 2.7/2.4

Table 2. Quantitative comparisons with the modified baselines.

Method
Reenactment Reconstruction

FID↓ CSIM↑ ARD↓ AU-H↓ LPIPS↓ AKD↓
FS-VID2VID∗ 100.9 0.505 4.32 0.33 0.191 3.66

Bi-layer∗ 125.8 0.442 3.95 0.32 0.192 2.76
LPD∗ 109.4 0.477 5.25 0.29 0.229 2.93

FOMM∗ 61.9 0.689 8.51 0.36 0.180 2.73
MRAA∗ 60.2 0.693 8.78 0.33 0.167 2.70

HeadGAN∗ 59.5 0.643 3.86 0.28 0.165 2.03
Face2Faceρ 44.5 0.729 2.82 0.22 0.123 1.48

2 Network architectures

Rendering network. Tab. 4 presents the detailed architecture of our rendering
network, which consists of an image encoder EI , an image decoder DI , and two
pose encoders Eps and Epd. The image encoder EI and decoder DI are built with
a series of downsampling, upsampling and residual blocks. The inverted residuals
bottleneck introduced by MobileNetV2 [4] is used in implementing these blocks.
Eps and Epd are identical in structure, i.e., two deconvolution blocks.

Motion network. Tab. 5 presents the detailed architecture of the mobile
network, which consists of three sub-networks, i.e., F1, F2 and F3. All sub-
networks share a similar structure, i.e., downsampling, residual, upsampling, and
convolution. Each sub-network takes a different scale of the source and landmark
images as the input.
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MarioNETteSource Driving Face2Faceρ

Fig. 2. Qualitative comparison with Mar-
ioNETte [1] under the one-shot setting.

AANSource Driving Face2Faceρ

Fig. 3. Qualitative comparison with AAN
[7].

Table 3. Quantitative comparisons with the ablation study cases.

Method
Reenactment Reconstruction

FID↓ CSIM↑ ARD↓ AU-H↓ LPIPS↓ AKD↓
w/o Lr

G 170.0 0.650 3.22 0.26 0.179 1.86
w/o Lw

G 311.1 0.001 2.83 0.38 0.410 2.15

w/o Ladv
G 50.6 0.695 2.88 0.23 0.142 1.53

w/o Lfm
G 45.1 0.710 2.84 0.22 0.128 1.48

Face2Faceρ 44.5 0.729 2.82 0.22 0.123 1.48

3 More high-resolution results

Due to the lack of suitable high-resolution datasets, the 1440 × 1440 version of
Face2Faceρ was trained using the upscaled images from VoxCeleb, i.e., 512×512
to 1440 × 1440. This inevitably limits the performance of Face2Faceρ on some
true high-resolution images. However, as discussed in the paper, such practice is
still of benefit. Here, we compare the faces generated by a 512× 512 model and
a 1440× 1440 model in Fig. 7. Images generated by the latter model are clearer
and sharper. More 1440× 1440 results are shown in Fig. 9. Note that all source
images in Fig. 9 are from the internet.
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LSRSource Driving Face2Faceρ

Fig. 4. Qualitative comparison with LSR
[3] under the one-shot setting.

Source Face2Faceρ Face2FaceρFVTH

yaw+30° yaw+30° yaw+45°

pitch+30° pitch+30° pitch+45°

roll+30° roll+30° roll+45°

Fig. 5. Qualitative comparison with
FVTH [6] on the task of head pose edit-
ing. The results are generated by its online
demo which only supports modifying the
Euler angle (i.e. yaw, pitch, roll) of the
head pose up to 30◦.

NVP Face2Faceρ NVP Face2Faceρ

Fig. 6. Qualitative comparison with NVP
[5] (using the authors’ official implementa-
tion). The NVP generator for each actor
needs to be trained separately on a 3 min-
utes video clip, while our method needs
only one image and does not require any
re-training.

Fig. 7. Left: faked 1440 × 1440 results
generated by upscaling the outputs of a
512× 512 model. Right: results generated
by 1440× 1440 model.

Face2FaceρSource Driving w/o r
G w/o w

G w/o adv
G w/o fm

G

Fig. 8. Qualitative comparisons with the ablation study cases.
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Table 4. Detailed architecture of rendering network. In table, Conv., Down., Up.,
Res., SPADE, DeConv. and Tanh. are the abbreviations of convolution layer, down-
sampling block, upsampling block, residual block, spatially-adaptive normalization,
deconvolution layer and element-wise tanh, respectively. BottleNeck(t,n,s,c) represents
the bottleneck block of MobileNetV2 [4] with expansion factor t, layers n, strike s and
output channels c.

EI DI Eps&Epd

3× 3-Conv.-1-16,
BN,ReLU

SPADE
4× 4-DeConv.-1-64,

BN,ReLU

Down. 4 Res. (2nd) 4× 4-DeConv.-4-32

SPADE SPADE

Down. 2 (1st) Up. 2 (1st)

SPADE SPADE

Down. 2 (2nd) Up. 2 (2nd)

SPADE SPADE

Res. (1st) Up. 4

SPADE 3× 3-Conv.-1-3,BN,Tanh.

Building Blocks

k × k-Conv.-s-c
Convolution layer with kernel size k,

stride s and output channels c

Down. 4
BottleNeck(t=1,n=1,s=1,c=8),
BottleNeck(t=6,n=2,s=2,c=12),
BottleNeck(t=6,n=2,s=2,c=28)

Down. 2 (1st)
BottleNeck(t=6,n=2,s=2,c=64),
BottleNeck(t=6,n=2,s=1,c=72)

Down. 2 (2nd) BottleNeck(t=6,n=2,s=2,c=140)

Res. (1st) BottleNeck(t=6,n=1,s=1,c=280)

Res. (2nd) BottleNeck(t=6,n=1,s=1,c=140)

Up. 2 (1st)
BottleNeck(t=6,n=2,s=1,c=96),

×2 Bilinear upsampling

Up. 2 (2nd)
BottleNeck(t=6,n=2,s=1,c=64),
BottleNeck(t=6,n=2,s=1,c=24),

×2 Bilinear upsampling

Up. 4

BottleNeck(t=6,n=2,s=1,c=14),
×2 Bilinear upsampling,

BottleNeck(t=6,n=2,s=1,c=8),
×2 Bilinear upsampling,

BottleNeck(t=1,n=1,s=1,c=16)

k × k-DeConv.-s-c
Deconvolution layer with kernel size k,

stride s and output channels c
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Table 5. Detailed architecture of motion network. In the table, Conv., Down., Up.
and Res. are the abbreviations of convolution layer, downsampling block, upsampling
block, and residual block, respectively.

F1 F2 F3

3× 3-Conv.-1-64,BN,ReLU Down. 2 Down.-64 Down. 2 Down.-32

Down. 4
Down.-128,

Down. 4
Down.-128,

Down. 4
Down.-64,

Down.-256 Down.-256 Down.-128

Res.-256 Res.-256 Res.-128

Up. 4
Up.-128, Res.-256 Res.-128
Up.-64 Res.-256 Res.-128

3× 3-Conv.-1-2

Up. 8

Up.-128,

Up. 8

Up.-64,
Up.-64, Up.-32,
Up.-32, Up.-16,

3× 3-Conv.-1-2 3× 3-Conv.-1-2

Building Blocks

k × k-Conv.-s-c
Convolution layer with kernel size k,

stride s and output channels c

Down.-c 4× 4-Conv.-2-c,BN,ReLU

Up.-c
×2 Bilinear upsampling,
3× 3-Conv.-1-c,BN,ReLU

Res.-c
Residual block [2] with kernel size 3× 3

and output channel c
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Fig. 9. Results of high-resolution images (1440×1440). Images with red boxes demon-
strate the source images, images with green boxes demonstrate the driving images, and
images with blue boxes demonstrate the reenacted face images.
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