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Fig. 1: FAIR (left) is a new dataset for unbiased albedo estimation that uses
high-quality facial scans, varied lighting, and a new evaluation metric to bench-
mark current approaches in terms of accuracy and fairness. We also propose a
new network, TRUST (right), for facial albedo estimation that reduces bias by
addressing the light/albedo ambiguity using scene disambiguation cues.

Abstract. Virtual facial avatars will play an increasingly important role
in immersive communication, games and the metaverse, and it is there-
fore critical that they be inclusive. This requires accurate recovery of the
albedo, regardless of age, sex, or ethnicity. While significant progress has
been made on estimating 3D facial geometry, appearance estimation has
received less attention. The task is fundamentally ambiguous because
the observed color is a function of albedo and lighting, both of which are
unknown. We find that current methods are biased towards light skin
tones due to (1) strongly biased priors that prefer lighter pigmentation
and (2) algorithmic solutions that disregard the light/albedo ambiguity.
To address this, we propose a new evaluation dataset (FAIR) and an
algorithm (TRUST) to improve albedo estimation and, hence, fairness.
Specifically, we create the first facial albedo evaluation benchmark where
subjects are balanced in terms of skin color, and measure accuracy us-
ing the Individual Typology Angle (ITA) metric. We then address the
light/albedo ambiguity by building on a key observation: the image of
the full scene –as opposed to a cropped image of the face– contains im-
portant information about lighting that can be used for disambiguation.
TRUST regresses facial albedo by conditioning on both the face region
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and a global illumination signal obtained from the scene image. Our
experimental results show significant improvement compared to state-
of-the-art methods on albedo estimation, both in terms of accuracy and
fairness. The evaluation benchmark and code are available for research
purposes at https://trust.is.tue.mpg.de.

1 Introduction

For critical systems such as face recognition, automated decision making or med-
ical diagnosis, the development of machine-learning-based methods has been fol-
lowed by questions about how to make their decisions fair to all sectors of the
population [1, 8, 32, 46]. For example, Buolamwini and Gebru [8] identify race
and gender biases in face analysis methods, which disproportionately misclassify
dark-skinned females; Rajkomar et al. [50] note an influence of historical biases
in machine learning methods for health care; and Kim et al. [30] point out how
rendering algorithms in computer graphics are designed mostly for light-skinned
people.

However, no such analysis exists for the task of 3D facial avatar creation. Here
the problem involves estimating the 3D geometry and albedo from one or more
images, where albedo is defined as a texture map corresponding to the diffuse
reflection of the face (including skin tone, lips, eye, etc). With growing interest
in on-line virtual communication, gaming, and the metaverse, the role of facial
avatars in our lives will likely increase. It is then critical that such technology
is equally accessible to all and that every person can be represented faithfully,
independent of gender, age, or skin color.

In this paper we address, for the first time, the problem of fairness in 3D
avatar creation from images in-the-wild, and show that current methods are bi-
ased towards estimating albedo with a light skin color. While skin-tone bias has
been extensively studied in the field of face recognition [18, 62], here we examine
a different problem. Specifically, we consider bias within methods that regress
facial albedo (of which skin tone is only one aspect) and discuss the particu-
lar challenges that this involves. We analyze three main sources for this bias.
First, existing statistical albedo models are trained from unbalanced datasets,
producing strongly biased priors. Second, existing albedo regression methods are
unable to factor lighting from albedo. When combined with a biased prior, they
simply infer dim illumination to compensate for dark skin. Finally, there is, to
date, no standard evaluation protocol that quantitatively reveals bias in albedo
estimation. This has led to the field largely ignoring issues of fairness in albedo
estimation.

This work makes several key contributions to advance fairness in facial albedo
estimation. First, we create a new dataset of realistic synthetic images of faces
in varying lighting conditions. We use this dataset, together with specifically
designed metrics, as a benchmark for evaluating accuracy and fairness of fa-
cial albedo reconstruction (Fig. 1, left); we call the benchmark FAIR for Facial
Albedo Independent of Race. With this we are able, for the first time, to quan-
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tify the bias of existing methods. We find that all existing methods are biased
to light skin tones, and analyze the technical reasons behind this.

Finally, we introduce a new neural network model called TRUST (Towards
Racially Unbiased Skin Tone estimation) that produces state-of-the-art results in
terms of accuracy, as well as less biased albedo estimates (Fig. 1, right). The key
to TRUST is the design of a novel architecture and losses that explicitly address
the light/albedo ambiguity. Specifically, we propose a two-branch network to
leverage scene cues for disambiguation. The first branch recovers the illumination
signal in the form of Spherical Harmonics (SH) [51], both from the entire scene
image and the individual facial crops. The second branch estimates diffuse albedo
from the individual crops, conditioned on the intensity of the SH vector. This
provides cues about the global illumination and helps the albedo network to
better decide on the overall skin tone. The network is further coupled with a
new statistical albedo model trained using a balanced sample of subjects. The
proposed approach achieves 56% improvement over the best alternative method
when evaluated on the new FAIR benchmark, highlighting the importance of
tackling fairness both from the dataset and the algorithmic point of view.

In summary, our contributions are: (1) We identify, analyze and quantify
the problem of biased facial albedo estimation. (2) We propose a new synthetic
benchmark, as well as new metrics that measure performance in terms of skin
tone and diversity. (3) We propose a solution for albedo estimation that sig-
nificantly improves fairness by explicitly addressing the light/albedo ambigu-
ity problem through scene disambiguation cues. (4) The benchmark, code, and
model are publicly available for research purposes.

2 Related work

3D face and appearance estimation. Face albedo estimation is typically
approached as an inverse rendering problem, in which face geometry, reflectance
and illumination parameters are estimated from a single image. Methods can
be roughly categorized into optimization-based [2, 6, 7, 56, 66] and learning-
based [11, 16, 22, 26, 29, 58, 65]; see Egger et al. [20] for a review. The majority
of these estimate appearance parameters of a 3D morphable model (3DMM) [7,
27, 48] trained from two-hundred white European subjects. This lack of diversity
results in a strong bias towards light-skinned appearance when jointly estimating
reflectance and lighting.

To obtain more varied appearance, Smith et al. [61] build an albedo model
from light-stage data, and Gecer et al. [25] build a neural generative model from
10K texture maps. Several other methods learn flexible appearance models di-
rectly from images, while jointly learning to reconstruct 3D shape and appear-
ance [10, 40, 54, 57, 60, 63, 64, 67, 68, 70]. Another line of work synthesizes
high-frequency appearance details from images [37, 55, 72]. All of these methods
treat the face in isolation by only analyzing a tightly cropped face region. In
contrast, our approach exploits cues from the entire scene that help decouple
albedo from lighting in unconstrained in-the-wild images.
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A related line of work directly estimates skin tone from images – i.e. a single
vector value (e.g. RGB) that summarizes the color of the face. This can be used
as a proxy for color correction [5, 12, 43] and for cosmetology purposes [33, 34].
Here we focus on estimating the full albedo map, but evaluate the accuracy of
both albedo and skin tone, with the goal of identifying potential fairness issues.
Disambiguating appearance and lighting. Given the RGB values of a pixel,
the proportion of color explained by light versus intrinsic appearance cannot be
recovered without further knowledge [51]. While the use of a statistical appear-
ance prior limits the variability of the intrinsic face color, it does not fully resolve
the ambiguity. To address this, Aldrian et al. [2] regularize the light by imposing
a “gray world” constraint that encourages the environment to be, on average,
gray. Hu et al. [28] regularize the albedo by imposing symmetry, thus preventing
illumination variation from strong point lights being explained by the appear-
ance. Egger et al. [19] learn a statistical prior of in-the-wild SH coefficients and
use this to constrain the light in an inverse rendering application. These meth-
ods impose priors or regularizers over the estimated light or appearance, using
heuristics to complement the statistical face model. Instead of using the tightly
cropped face in isolation, we estimate the environment light from the scene and
use this in learning to disambiguate light and albedo.
Racial face bias. Several works identify demographic bias (sex, age, race) for al-
gorithms in the context of biometrics (e.g., face verification, age estimation, race
classification, emotion classification, etc.); see Drozdowski et al. [18] for a review.
Dedicated benchmark datasets were proposed in [53, 69] to support the study of
racial biases in face recognition. Wang et al. [69] show bias in four commercial
face recognition systems, and propose an algorithmic solution to mitigate this.
Buolamwini and Gebru [8] report bias in gender classification systems correlated
to skin tone and sex, where darker-skinned females are misclassified most fre-
quently. Kim et al. [30] describe racial bias in existing quantitative metrics used
to group skin colors and hair types, and propose an evaluation scheme based on
complex numbers to alleviate this bias. No other previous work has quantita-
tively assessed bias in facial albedo estimation methods, nor is there any existing
dataset for this task. Hence, FAIR provides an important new resource to the
community.

3 Dataset and Metrics for Quantifying Skin Tone Bias

To develop unbiased algorithms it is important to first identify potential prob-
lems. Since it is difficult to acquire ground-truth appearance, there is to date no
albedo evaluation dataset available, much less one that covers a wide range of
ethnicities and scenes. To address this, we describe a new dataset for evaluating
single-image albedo reconstruction methods, constructed using high-quality fa-
cial scans. We additionally propose a set of metrics that measure fidelity of the
estimated albedo, as well as accuracy and diversity of the overall skin tone.

Balancing skin type. There are many types of bias but here we focus on skin
color, which means we need an evaluation dataset that is balanced across this
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Fig. 2: We address biased albedo estimates by tackling the light/albedo ambi-
guity using scene disambiguation cues. Given an image of a scene with faces,
we first obtain the 3-channel global light intensity factor using the Escene light

encoder. We next extract facial crops, and condition the albedo encoder Ealbedo

by concatenating the intensity as an extra channel to the input. Finally, a crop-
based light encoder Eface light estimates normalized SH parameters, which are
combined with the color intensity to obtain the final light estimate for the crop.
The network is trained using a scene consistency loss, which requires the light
from all faces in an image to be the same (i.e. permutation invariant).

factor. There are several ways to quantify the skin color of a person. While
self-reported ethnicity labels are commonly used in the literature (e.g. [38, 69]),
ethnicity is not well defined and there can be a large variety of skin types within
ethnic groups. In dermatology, an extensively used system is the Fitzpatrick scale
[23], employed also in computer vision research for balancing datasets [8, 17, 36,
71]. However, the scale is based on subjective assessments of skin sensitivity
and tanning ability, and it has been shown to work sub-optimally for certain
populations [49, 73]. Instead, we employ the Individual Typology Angle (ITA)
[9], also recently considered in [45]. The metric is based on the L* (lightness) and
B* (yellow/blue) components of the CIE L*a*b* color space, and is computed
as

ITA(L∗, b∗) =
arctan(L

∗−50
b∗ )× 180

π
. (1)

We consider the ITA score of an albedo map to be the average of all pixel-
wise ITA values within a pre-computed skin region area (defined on the UV
map). ITA can be used to classify the skin according to six categories, ranging
from very light (category I) to dark (category VI) [9, 15]. It has the advantage
of being an objective metric, easily computable from images, and significantly
correlated with skin pigmentation [14]. More details can be found in Sup. Mat.

Dataset construction. The dataset is constructed using 206 high-quality 3D
head scans purchased from Triplegangers1. The scans were selected such that
they cover a relatively balanced range of sexes and skin colors (ITA skin group).

1 https://triplegangers.com/

https://triplegangers.com/
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Ages range from 18 to 78 years old. All of the scans were captured under neutral
expression and uniform lighting. We obtain UV texture maps compatible with
FLAME [39] by registering the FLAME model to the scans using the approach
in [39] and we treat the texture maps as approximate ground-truth albedo.

To create a photo-realistic dataset we rendered the scans in complex scenes.
Specifically, we used 50 HDR environment maps from Poly Haven2 covering both
natural and artificial lighting. In each scene we rendered three head scans under
the same illumination. To ensure a balanced distribution of skin types, each
image was constructed by first randomly selecting a skin type, and then randomly
selecting a sample scan within the type. Our final testing dataset contains 721
images and 2163 facial crops under different illumination, with approximate
ground-truth UV maps. Details and examples are provided in Sup. Mat.

Evaluation metrics. To focus on both accuracy and fairness, we use the fol-
lowing metrics:

- ITA error. We compute fidelity of skin tone by taking the average error in
ITA (degrees, see Eq. 1) between predicted and ground-truth UV maps, over a
skin mask region (see Sup. Mat.). We report average error per skin type (I to
VI), as well as average ITA error across all groups.

- Bias score. We quantify the bias of a method in terms of skin color by
measuring the standard deviation across the per-group ITA errors (note that
this is not the same as the standard deviation over the full dataset). A low value
indicates roughly equal performance (i.e. unbiased) across all skin tones.

- Total score. We summarize average ITA and bias score into a single score,
which is the sum of the two.

- MAE. We also report results with a commonly employed image metric, namely
mean average error. Here we calculate errors over the entire UV map, as opposed
to only the skin region.

Fairness of albedo estimates of current methods. Using the above evalu-
ation criteria, we benchmark several recent methods for facial albedo estimation
from images in the wild. These are summarized in the top rows of Tab. 1. When
observing the “ITA per skin type” column, we note that the accuracy of all
methods varies with skin type, performing best on those values that are bet-
ter represented by the statistical model3. In particular, extreme skin types such
as I and VI tend to have noticeably larger errors. Low (bold) numbers for some
types and high ones for others on each line indicates bias. An unbiased algorithm
should have roughly equal errors across skin types.

2 https://polyhaven.com/
3 For GANFIT [25], the albedos contain a significant amount of baked-in lighting, and
were captured with lower light conditions, hence the tendency to do well on dark
skin tones.

https://polyhaven.com/
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4 Reasons Behind Racially Biased Albedo Estimations

Recovering the 3D shape and appearance of an object from a single RGB image
is a highly ill-posed problem due to fundamental ambiguities arising from the
interplay between geometry [4, 21] and lighting [51] in the image formation
process. For known objects such as the human face, a standard strategy is to
use a strong prior in the form of a low-dimensional statistical model, e.g. the
3D Morphable Model (3DMM) [7, 48] and its variants [13, 39, 61], to constrain
the solution to the space of valid shapes and appearances. This idea has been
widely adopted and has led to impressive advances in the field [20]. Yet, no
careful consideration has been given to ensure that the models cover a balanced
demographic distribution; indeed, the most widely used appearance model [48]
was built using two-hundred white subjects. Several 3DMM variants have been
made available (e.g. [38, 61]) but none of them ensure a balanced distribution
of skin tones. It is worth noting that a biased albedo model, employed within a
neural network, can still be trained to produce outputs that are far away from
the statistical mean. This is the case for example of MGCNet [58] (see Tab. 1),
which uses low regularization weights to extrapolate results for type V skin tones.
However, these are noisy estimates that do not faithfully represent the albedo,
and the model still cannot extrapolate to type VI skin tones.

Even if one had an unbiased statistical model of face albedo, the problem
remains ill-posed, leading to an algorithmic source of bias [44]. There is a fun-
damental ambiguity between scene lighting and albedo that cannot be resolved
without strong assumptions [51]. Even with a good statistical model of face
albedo, there are an infinite number of valid combinations of light and albedo
that can explain the image. For example, an image of a darked-skin person can
be explained by both dark skin and a bright light, or light skin and a dim light.
This can be easily observed by looking at the shading equation commonly used
for diffuse objects:

IR = IA ⊙ IS , (2)

where IR is the final rendered image, IS is the shading image, IA is the albedo
image, and ⊙ denotes the Hadamard product. When both the albedo and light
are unknown there is a scale ambiguity: for a fixed target image IR, an increase
in IS by a factor of s results in a decrease in IA by a factor of 1/s. Given that
skin tone dominates the albedo color in IA, an overly bright estimate of the light
will result in an overly dark estimate of the skin tone, and vice-versa. To address
this we next propose a method that exploits scene lighting to reduce ambiguity
in conjunction with an improved prior.

5 Unbiased Estimation via Scene Disambiguation Cues

Resolving the ambiguity above requires additional information. While most meth-
ods in the literature work with a cropped face image, our key insight is that the
larger image contains important disambiguation cues.
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Table 1: Comparison to state of the art on the FAIR benchmark. We show:
average ITA error over all skin types; bias score (standard deviation); total score
(avg. ITA+Bias); mean average error; and avg. ITA score per skin type in degrees
(I: very light, VI: very dark). Our method achieves more balanced estimates, as
can be seen in the bias score, as well as accurate skin color predictions.

Method Avg. ITA ↓ Bias ↓ Score ↓ MAE ↓ ITA per skin type ↓
I II III IV V VI

Deng et al. [16] 22.57 24.44 47.02 27.98 8.92 9.08 8.15 10.90 28.48 69.90
GANFIT [25] 62.29 31.81 94.11 63.31 94.80 87.83 76.25 65.05 38.24 11.59
MGCNet [58] 21.41 17.58 38.99 25.17 19.98 12.76 8.53 9.21 22.66 55.34
DECA [22] 28.74 29.24 57.98 38.17 9.34 11.66 11.58 16.69 39.10 84.06
INORig [3] 27.68 28.18 55.86 33.20 23.25 11.88 4.86 9.75 35.78 80.54
CEST [70] 35.18 12.14 47.32 29.92 50.98 38.77 29.22 23.62 21.92 46.57

Ours (BFM) 16.19 15.33 31.52 21.82 12.44 6.48 5.69 9.47 16.67 46.37
Ours (AlbedoMM) 17.72 15.28 33.00 19.48 15.50 10.48 8.42 7.86 15.96 48.11
Ours (BalancedAlb) 13.87 2.79 16.67 18.41 11.90 11.87 11.20 13.92 16.15 18.21

5.1 Model

We begin by describing the image formation model employed throughout this
work.

Geometry. We reconstruct geometry using the FLAME [39] statistical model,
which parameterizes a face/head mesh using identity β ∈ R|β|, pose θ ∈ R3k+3

(with k = 4 the number of joints), and expression ψ ∈ R|ψ| latent vectors.

Albedo. We use a low-dimensional linear model to represent diffuse albedo.
To avoid the biases present in current publicly available models, we purchased
54 uniformly lit 3D head scans from 3DScanStore4, covering the full range of
skin types as measured by the ITA score. We converted these into the d × d
FLAME UV texture space, and used Principal Component Analysis (PCA) to
learn a model that, given albedo parameters α ∈ R|α|, outputs a UV albedo map
A(α) ∈ Rd×d×3. The albedo image is reconstructed as IA = W (A(α)), where
W is a warping function that converts the UV map into camera space.

Illumination. We take the standard approach of approximating environment
lighting using spherical harmonics (SH). Using this, the color of pixel (i, j) is
computed as

IR(i, j) = IA(i, j) · IS(i, j)

= IA(i, j) ·
B2∑
k=1

γkHk(N(i, j))

= IA(i, j) · γ · h(i, j)

(3)

4 https://www.3dscanstore.com/

https://www.3dscanstore.com/
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where IR(i, j) is the intensity at pixel (i, j) (computed once for each channel);
B = 3 is the number of SH bands; γ = (γ1, . . . , γB2) is the vector containing
the SH parameters; Hk, k = 1 . . . B2, are the orthogonal SH basis functions,
h(i, j) ∈ RB2

is the vectorised version of Hk(N(i, j)), and N is the normal
image.

Since the overall intensity of the image can be described by either the albedo
IA or the shading IS , we mitigate this fact by decomposing the SH coefficient
vector of each color channel into a unit-scale vector and its norm:

IR(i, j) = ||γ|| · IA(i, j) ·
γ

||γ||
· h(i, j). (4)

The scale factor ||γ|| can now be regarded as the overall light intensity (one
value per RGB channel), while the unit-scale SH parameters γ

||γ|| contain the light

directional information. Given a fixed directional SH parameter, the scale is the
key variable that modulates the skin tone. We estimate this value independent
of the albedo and the normalized SH vector.

5.2 TRUST Network

An image of a face is typically only a small part of a larger image. Our key novelty
here is to address the light/albedo ambiguity problem by leveraging scene cues
to regularize the ill-posed problem. This is implemented by three design choices:
(1) a novel scene consistency loss, (2) a two-branch architecture that exploits
the SH decomposition from Eq. 4, and (3) a light-conditioned albedo estimation
network.

Scene consistency loss. First, we observe that a scene containing multiple
faces can provide hints about the illumination. Taking inspiration from human
color constancy, we can assume a single model of illumination for the entire
scene, such that when we observe a variety of skin colors we know that the
difference is due to albedo and not lighting5. While other works have considered
albedo consistency among different views as a cue for disambiguation [59, 63],
light consistency within an image has been mostly unexplored. We formalize the
idea by requiring the SH parameters of different faces in a same image to be
close to each other. Specifically, given the set of all the estimated SH vectors
{γi}i={1..N}, where N is the number of faces in the image, we penalize the
difference between any two facial crops as Lsc = ||P ({γi})− {γi}||1, where P (·)
is a random permutation function (illustrated in Fig. 2 right).

However, we note that this loss alone cannot ensure a correct albedo recon-
struction: it can only work when there is a variety of skin tones present in the
scene, otherwise the estimated albedos can still be consistently brighter or darker
than the true albedo.

5 There are exceptions to this, such as a scenes where some faces are in shadow or
where the lighting is high-frequency.
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Two-branch architecture. As a complementary cue, we leverage the decom-
position of SH into norm and direction described in Eq. 4, and exploit the fact
that the global illuminant can provide additional information about the over-
all skin tone. To see why, consider the example of a dark-skinned person during
daylight. The albedo can be correctly predicted as a dark skin under bright light,
or incorrectly predicted as a light skin under dark light; the choice will depend
largely on the bias of the prior. Yet, a coarse estimate of the global illuminant
will reveal that the first case is the correct one. This provides a strong cue about
where the output should lie in the skin color palette.

We implement this observation by proposing a two-branch architecture, shown
in Fig. 2, left. First, the input image is passed through a scene light encoder
Escene light that predicts the norm of the scene spherical harmonics ||γ|| for each
RGB channel, thus capturing the overall light intensity and color. We next ob-
tain facial crops using an off-the-shelf face detector (or ground-truth values at
training time). From these crops, an albedo encoder Ealbedo predicts the albedo
parameters of the model α, while a crop-based light encoder Eface light predicts
the normalized SH vector γ′ = γ/||γ||. The outputs of Escene light and Eface light

are then combined to obtain the final SH prediction γ.

Light-conditioned albedo estimation. We note that during test time, the
albedo estimator Ealbedo does not contain information about the scene, which
can still introduce ambiguities. To address this, we propose to condition Ealbedo

on the estimated light intensity. For this, we broadcast the intensity factor from
the scene light encoder into an image of the same size as the facial crop, and
concatenate it with the input as an additional channel.

Semi-supervised training. Given that unsupervised disentanglement cannot
be solved without proper inductive biases [41] or without a limited amount of
potentially imprecise supervision [42], here we use a semi-supervised learning
strategy. Specifically, we generate a synthetic training set of 50k images using
1170 scans acquired from Renderpeople6, combined with 273 panoramic HDR
images from Poly Haven7. We train the networks using a combined synthetic/real
dataset to ensure generalization.

Training. TRUST is trained using the following loss function:

L = λphoLpho + λscLsc + IλSHLSH + IλalbLalb. (5)

Here, Lpho = ||I − IR||1 is the L1 photometric loss between the input image and
rendered image, and Lsc is the scene consistency loss. I is an indicator function
with value 1 for supervised training data and 0 for real. When training with
synthetic data we also employ an L1 loss LSH = ||γ− γ̃||11 between ground-truth
SH coefficients γ and the estimates γ̃, as well as an L1 loss between the rendered

6 https://renderpeople.com/
7 Note that these scenes are completely different from those used in the evaluation
benchmark.

https://renderpeople.com/
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Fig. 3: Comparison with recent face reconstruction methods on the proposed
albedo benchmark. From left to right: input image, GANFIT [24], INORig [3],
MGCNet [58], Deng et al. [16], CEST [70], DECA [22], TRUST (ours) and
ground-truth albedo rendering.

albedo and ground-truth. Note that we include the self-supervised loss on syn-
thetic data since the ground-truth light and albedo are only approximations to
the physical ground-truth. We set λpho = 10, λsc = 10, λSH = 20, λalb = 20 to
weight the loss terms based on validation-set performance.

To compute the photometric loss we need an estimate of the geometry and
camera. For this we use a pre-trained state-of-the-art geometry estimation net-
work, DECA [22], which provides FLAME shape and expression coefficients, as
well as weak perspective camera parameters. This module is fixed during train-
ing.

5.3 Implementation details

We implemented our approach in PyTorch [47], using the differentiable rasterizer
from Pytorch3D [52] for rendering. We use Adam [31] as the optimizer with a
learning rate of 1e − 4. All of the encoders use Resnet-50 architectures with
input images of size 224×224 (in the case of full scene images, we first randomly
crop a square and then resize). The UV space size is d = 256. To get shape,
expression and camera parameters we use DECA [22] to regress the FLAME
parameters |β| = 100 and |ψ| = 50. To train with real data, we use the subset
of the OpenImages dataset [35] that contains faces.

We apply a two-stage training strategy. The first stage employs fully super-
vised training with a batch size of 32 using the synthetic dataset for one epoch.
The second stage uses semi-supervised training with a batch size of 48 and all
proposed losses for 4 epochs. More details can be found in Sup. Mat.
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Table 2: Ablation study. We show comparisons to the following alternatives:
(1) light estimation from crops (“faceSH”) with self-supervised (self) and semi-
supervised (semi) training sets; (2) SH intensity estimation from the scene, with
SH directional estimation from crops (“fuseSH”); (3) fuseSH with scene consis-
tency loss (“sc”); (4) fuseSH with conditioning (“cond”); (5) Ours: fuseSH with
scene consistency and conditioning.

Method Avg. ITA ↓ Bias ↓ Score ↓ MAE ↓

faceSH + self 24.17 11.46 35.62 25.81
faceSH + semi 14.70 6.60 21.31 17.64

fuseSH 15.22 11.08 26.31 17.02
fuseSH + sc 15.82 3.50 19.32 20.37
fuseSH + cond 14.16 6.56 20.72 17.05
Ours 14.18 2.63 16.81 19.08

6 Evaluation

We compare TRUST qualitatively and quantitatively with several SOTA meth-
ods. MGCNet [58], Deng et al. [16], INORig [3] and DECA [22] use the Basel Face
Model (BFM) [48] for albedo estimation; GANFIT [25] uses its own GAN-based
appearance model; and CEST [70] is a model-free approach.

6.1 Qualitative results

We provide qualitative results on both real images (Fig. 4a) and synthetic images
from the FAIR benchmark (Fig. 3), showing faces with a variety of skin colors
and scene illuminations. We observe that (1) GANFIT [25], INORig [3], and
DECA [22] produce albedo maps with low variety, hence achieving low ITA
values on specific skin types, but high ITA values for other skin types; (2) the
model-free approach CEST [70] bakes in a significant amount of light, since
they cannot properly disentangle it from the albedo; (3) MGCNet [58] and, to a
certain degree, Deng et al. [16] produce more diverse albedos, but since the BFM
model does not include dark skin tones in the training dataset, these can only be
encoded by extrapolating considerably, introducing noise. For more qualitative
examples, see Sup. Mat.

To evaluate robustness we apply TRUST on images of a same subject un-
der different lighting, and with varying backgrounds. Fig. 4b shows that the
estimated albedo, per subject, is consistent across lighting and background vari-
ations, and that skin tones are well captured.

6.2 Quantitative comparisons

We quantitatively compare several albedo estimation methods on the FAIR
benchmark as described in Sec. 3. Table 1 shows that the proposed approach
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(a) (b)

Fig. 4: (a) Qualitative comparisons on real world images. From left to right: 1)
Input, 2) INORig [3], 3) MGCNet [58], 4) DECA [22], 5) TRUST (Ours). (b)
Given images of the same subject (from the FAIR benchmark test set) under
varying lighting (Rows 1 & 3), TRUST outputs similar albedos (Rows 2 & 4).

(using the balanced albedo model) outperforms existing methods on all aggre-
gated measures (i.e. Avg. ITA, Bias, Score, and MAE), and produces a more
uniform (low) error across skin types. Note that while Deng et al. [16], IN-
ORig [3], and GANFIT [25] obtain the lowest scores for individual skin types,
they have large errors for others, indicating their bias towards particular skin
tones, which results in higher aggregated errors.

It is worth noting that, while shading information acts locally and provides
gradients for geometry reconstruction, the skin tone is a global property of the
albedo (low-frequency component). Hence, correct shape estimation does not
necessarily imply good skin tone estimation (and vice-versa), which explains why
methods such as DECA can achieve state-of-the-art results on shape estimation,
even with strong regularization on the albedo coefficients that lead to incorrect
skin tone estimates.

6.3 Ablation studies

Effect of albedo model space.We investigate how much a biased albedo space
affects the final performance. To this end, we train two additional versions of
our final network, but using instead the BFM albedo space [48] and AlbedoMM
[61]. Both model variants show large improvements on most skin types compared
to prior work (see Tab. 1). This demonstrates that addressing the light/albedo
ambiguity is important for unbiased albedo estimation, and allows to push the
albedo space to its representational limit. Both model variants perform similarly
(see Tab. 1) in Avg. ITA error and Bias scores (std), but around 20% and 580%
higher than our final model with a balanced albedo space. Most errors of these
two variants come from type V and VI, which shows the importance of using a
balanced albedo model to cover the full range of skin tones.
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Light and albedo estimation from facial crops (faceSH): Here, both light
and albedo encoders use facial crops as input, which is comparable to prior meth-
ods. We evaluate this setting using self-supervised training and semi-supervised
training, to test the importance of the synthetic vs in-the-wild training set for
reducing racial bias. Results are shown in the first two rows of Table 2, where
we see that all metrics are significantly improved with access to synthetic data.
Scene light estimation (fuseSH): We next consider the case where the light
intensity is estimated from the scene image, as in our approach, but with the
following differences: (1) without conditioning and without scene consistency
(fuseSH), (2) with scene consistency alone (fuseSH+sc), (3) with conditioning
alone (fuseSH + cond). We observe in Table 2 that each of these components
improves a different aspect: while conditioning results in better skin color predic-
tions, the scene consistency encourages fairer estimates. Our final model, which
uses both scene-consistency and conditioning, achieves the lowest total score.

7 Conclusions

This work presented initial steps towards unbiased estimation of facial albedo
from images in the wild, using two main contributions. First, we built a new
evaluation benchmark that is balanced in terms of skin type. We used this bench-
mark to highlight biases in current methods. We further proposed a new albedo
estimation approach that addresses the light/albedo ambiguity problem, hence
encouraging fairer estimates. Our solution is built on the idea that the scene
image can be exploited as a cue to disambiguate light and albedo, resulting in
more accurate predictions. The experimental results confirm that scene infor-
mation helps to obtain fairer albedo reconstructions. We hope that this work
will encourage the development of methods that are designed not just towards
realism, but also towards fairness.
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