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1 Neural Network Architecture Design

The proposed method consists of a total of five neural networks: encoder, com-
pressor, regressor, projection head, and additional head for discriminative learn-
ing. Here, encoder and compressor are divided into two types according to the
backbone. As shown in Figure 1, the compressor (AL) of AlexNet (AL) [12] is
designed with average pooling with flatten and a single fully-connected (FC)
layer, and requires about 294k learnable parameters. The compressor (R18) of
ResNet18 (R18) [7] is designed with average pooling with flatten and two FC
layers, and has about 545k learnable parameters. And, the regressor, projection
heads are all composed of two FC layers with batch normalization, and only
require a small amount of learnable parameters of 10k or less. Those networks
differ from each other in the types of dropout and activation function. Please
refer to Figure 1 for details of dimensions and training parameters.

2 Forward/backward Pass for Optimization Process

Overview. The formulas of SparseMax (Sp) and SoftMax (Sm) used in the
feature transformation of the latent feature z are as follows.

Sp(z) := argmax
p∈∆d−1

⟨z,p⟩ − 1

2
∥p∥2 = argmin

p∈∆d−1

∥p− z∥2 (1)

Sm(z) := argmax
p∈∆d−1

⟨z,p⟩+H(p) =
ez∑
i e

zi
(2)

where ∆d−1 =
{
p ∈ Rd

+ | ∥p∥1 = 1
}
, H (p) = −

∑
i pilnpi, i.e., the negative

Shannon entropy. The output za of Sp (Eq. (1)) generates sparse facial features
associated with emotional expression. The output zn of Sm (Eq. (2)) generates
the average attention information of the face, which shows a relatively contrast-
ing characteristic to za.

Eqs. (1) and (2) can be generalized to a differentiable (convex) optimiza-
tion problem based on the (arbitrary) objective function f and the constraint
functions g and h as follows.

p∗ (z) = argmin
p

f (p, z)

subject to g (p, z) ≤ 0 and h (p, z) = 0
(3)
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For example, in Eq. (3), the objective function f corresponds to ∥p − z∥2 in
Eq. (1). The constraint functions h and g correspond to ∥p∥1 = 1 and p ≥ 0,
respectively. Eq. (2) can also be interpreted in the same way as Eq. (1). After
all, the optimal solution p∗ in Eq. (3) corresponds to za and zn of Eqs. (1) and
(2), respectively.

Fig. 1. Details of network architecture of the proposed method. Here, ‘flatten’ indicates
the process of vectorizing feature maps

Forward pass. Obtaining p∗ is to find solutions (p∗, λ∗, ν∗) that satisfy the
equality constraints of the KKT conditions of Eq. (4) below.

G (p, λ, ν) =

∇pf (p, z) + ∂pg (p, z)
T λ+ ∂ph (p, z)T ν

λ ◦ g (z)
h (p)

 (4)

Here, λ and ν are dual solutions of Eq. (4). And, the optimal solution (p∗, λ∗, ν∗)
of Eq. (1) must satisfy the following conditions.

G (p∗, λ∗, ν∗) = 0, g (p∗, z) ≤ 0, λ∗ ≥ 0 (5)

As a result, the embedded conic solver (ECOS) of the CVXPY library [3] calcu-
lates p∗ through an iterative optimization process while satisfying the conditions
of Eqs. (4) and (5).
Backward pass. In the proposed method designed in end-to-end fashion, the
backward propagation of Sp and Sm is as follows. First, calculate ∂(p,λ,ν)G, i.e.,
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the Jacobian matrix of G (p∗, λ∗, ν∗). Then, register this matrix value in the
backward hook of the Pytorch library. Here, the backward hook that operates
during back-propagation of the end-to-end neural network allows to compute the
gradients of Sp and Sm together with the gradient values of the previous layer.
Finally, the computed gradients are propagated to the next layer.

In Listing 1.1, we can see the Pytorch-like pseudocode declaring Sp and Sm in
less than 20 lines. For more information on forward and backward propagation,
see [4].

Fig. 2. Additional qualitative results of frame unit emotion fluctuations and neural
activation maps on validation split of Aff-wild dataset

3 Details of Evaluation Metrics

Root mean-squared error (RMSE) measures the point-wise difference: RMSE =√
E (x− x̂)

2
. Here, x and x̂ refer to GT and prediction, respectively. Sign

agreement (SAGR) measures the overall positive/negative degree of emotion:

SAGR = 1
N

∑N
i=1 Γ (sign (xi) , sign (x̂i)). Here, Γ is an indicator function that

outputs 1 if two values have the same sign, and 0 otherwise. In addition, in or-
der to overcome the disadvantages of the previous metrics that cannot measure
the correlation between two variables, the Pearson correlation coefficient (PCC),

which can measure linearity, was used: PCC = E[(x−µx)(x̂−µx̂)]
σxσx̂

. Here, µx and
σx indicate the mean and standard deviation of x. The concordance correlation
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Table 1. Results on the AffectNet. Red and blue indicate the first and second-ranked
value, respectively

Methods Backbone Params.
RMSE (↓) PCC (↑) CCC (↑)
(V) (A) (V) (A) (V) (A)

Baseline [15] AlexNet 61M 0.37 0.41 0.66 0.54 0.60 0.34
Jang et al. [8] SSD w/ VGG16 - 0.44 0.39 0.58 0.50 0.57 0.47
Kollias et al. [10] VGG16 - 0.37 0.39 0.66 0.55 0.62 0.54
Barros et al. [1] AlexNet - - - - - 0.67 0.38
Kossaifi et al. [11] ResNet18 - 0.35 0.32 0.71 0.63 0.71 0.63
Hasani et al. [6] ResNeXt50 3.1M 0.267 0.248 0.78 0.86 0.74 0.85

CAF [9]
ResNet18 (R18) 11M 0.219 0.187 0.86 0.85 0.83 0.84

AlexNet (tuned) (AL) 3.6M 0.222 0.192 0.81 0.86 0.80 0.85

AVCE (Ours)
ResNet18 (R18) 11M 0.191 0.174 0.903 0.848 0.865 0.840

AlexNet (tuned) (AL) 2.7M 0.198 0.180 0.908 0.832 0.860 0.826

coefficient (CCC), which measures the agreement of two variables, is defined as

follows: CCC = 2σxσx̂PCC(x,x̂)

σ2
x+σ2

x̂+(µx−µx̂)
2 .

4 Full Comparison on AffectNet

In Table 1, AVCE (R18) improved RMSE (V) by 0.028 and improved PCC (V)
by 4.3% in comparison with CAF (R18) [9]. Even though CCC (A) of AVCE
(AL) was about 2.4% lower than that of CAF (AL), AVCE showed superior
performance in the aspect of RMSE, which is very important in evaluating Af-
fectNet consisting only of static images. In addition, it is worth noting that the
number of learnable parameters of AVCE using projection heads amounted to
only 75% of that of discriminator-based CAF.

5 Additional Qualitative Results

This section analyzes the qualitative results of AVCE through neural activation
maps [21] for arousal and valence, respectively. First, let’s take a look at the frame
unit emotion fluctuations in the Aff-wild dataset (see Fig. 2). AVCE captured
the label change at the emotional peak point (e.g., the 150th) better than CAF
[9] and baseline [15]. This visualization demonstrates the ability of AVCE to
track the fine-grained fluctuation of labels on the arousal and valence axes.

Then, the attention regions of AVCE and other techniques are compared
through neural activation maps obtained from high-dimensional images of Af-
fectNet. As shown in the rightmost column of Fig. 3(a), AVCE captured facial
regions precisely where emotions were activated even in images with high bright-
ness saturation. Also, similar result is observed in the rightmost column in Fig.
4(d). Overall, AVCE showed activation results near facial landmarks such as
eyes, nose, and mouth. On the other hand, CAF and baselines often focused on
backgrounds or areas away from facial landmarks.
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Table 2. Ablation study according to the negative mining methods on the Aff-wild

CRL formula
Negative mining CCC (↑)
Debiased Hard (V) (A)

InfoNCE [16]
0.637 0.546

✓ 0.631 0.552
✓ 0.646 0.577

Barlow-Twins [19]
0.653 0.566

✓ 0.626 0.564
✓ 0.660 0.606

AVCE (AL) (Ours)
0.682 0.594

✓ 0.686 0.617
✓ 0.691 0.592

6 Synergy Effect with Negative Mining

This section analyzes the synergy effect of AVCE using the latest negative mining
methods [2,17] for contrastive representation learning (CRL). A way of applying
negative mining is as follows: From the negative pairs (x,yn) ∼ PXPY sampled
as many as the number of mini-batches (N), N̄(< N) pairs are selected by
[2,17]’s mining criterion. Specifically, Debiased [2] reduces the false negatives,
i.e., yns similar to x expressing global facial characteristics, and then gives a
debiasing effect to CRL. Hard [17] selects hard negatives yns with adjustable
hardness through importance sampling strategy.

Table 2 shows the performance of AVCE and other CRL methods to which
each mining method is applied. All CRL methods (InfoNCE [16], Barlow-Twins
[19], and AVCE) achieved significant synergy with the Hard method. For ex-
ample, Barlow-Twins with Hard showed 0.04 improved CCC (A), and AVCE
with Hard showed 0.009 improved CCC (V). However, Debiased could not con-
firm synergy with both InfoNCE and Barlow-Twins. On the other hand, AVCE
with Debiased showed 0.023 improved CCC (A), achieving state-of-the-art per-
formance on the arousal axis.

7 Derivation of AVCE

First, InfoNCE in main body is rearranged as follows:

sup
f∈F

EPXY
f(x,y)− log

(
EPX

EPY
ef(x,y)

)
. (6)

Exponential or logarithmic operations of Eq. (6) can cause learning instability.
So, we remove log and exp from Eq. (6), and add a regularization term to prevent
excessive increase of f as follows:

sup
f∈F

EPXY
f(x,y)− EPXPY

f(x,y) + (reg.). (7)
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When the regularization term of Eq. (7) is defined from the second moment
of f , the same formula as AVCE is derived. The difference in the lower bound
between Eq. (6) and Eq. (7) is negligible, and the contrastive properties can be
preserved.

Table 3. Recognition performance on
RAF-DB test set

Methods Accuracy (%)

FSN [20] 81.10
DLP-CNN [13] 84.13
RAN [18] 86.90
DACL [5] 87.78

AVCE-discrete 84.70

Table 4. Comparison of different back-
bones on Aff-wild

Backbones
PCC CCC

(V) (A) (V) (A)

ResNet18 0.600 0.621 0.552 0.583
ResNet50 0.621 0.609 0.562 0.553
ResNet101 0.610 0.632 0.581 0.580

8 Other Experimental Results

Results on RAF-DB. In order to validate whether AVCE works in the dis-
crete FER task, we additionally utilized RAF-DB. RAF-DB is annotated with
six discrete basic expressions (i.e., happy, surprise, angry, fear, disgust, and sad)
and neutral expressions. And, it consists of 12,271 training images and 3,068
testing images. Technically, after modifying the output dimension of the regres-
sor and projection head from 2 to 7, the last activation function was removed,
and categorical crossentropy was used for learning instead of MSE. All other set-
tings were the same. The experimental results are shown in the Table 3. AVCE
showed about 0.6% improvement in accuracy than DLP-CNN [13]. Although the
performance was about 3% lower than that of the SOTA methods, if appropriate
AVCE modification according to the understanding of discrete emotion category
is involved, it will be possible to achieve SOTA performance even in RAF-DB.

Results of different backbones. Table 4 shows the performance tendencies
according to the increase in the number of ResNet layers. The number of layers
and the value of the Valence axis tended to be proportional to each other, and
the highest PCC (A) performance was observed in ResNet101.

Effect of AVCE. We plotted some samples of AFEW-VA evaluation split in a
two-dimensional space using t-SNE visualization tool [14] to analyze the implicit
effect of feature learning by AVCE. The result is shown in Fig. 5. In general,
it was observed that samples with small expression changes (e.g., neutral) were
concentrated in the middle. On the other hand, samples corresponding to angry
emotion were mainly located near the bottom of the projection space.

In addition, an experiment was performed to analyze the explicit effect of
feature learning by AVCE. The result is shown in Table 5. Thanks to the triplet-
based regularization term and the well-optimized training settings, RMSE values
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of 0.2 or less were observed even in the absence of LAV CE . However, the PC-
C/CCC values on Valence axis decreased significantly by about 0.2. Values on
Arousal axis also showed similar trends.

Inference speed. During the training phase, it takes about 213.7, 529.1, and
451.6 (ms) to update the parameters of Baseline, CAF, and AVCE, respectively
(per 1 iteration). During the testing phase, the operating times of Baseline,
CAF, and AVCE are 1.46, 1.10, and 1.07 (ms), respectively. The speed of each
technique based on the image size of 224×224 and AlexNet was measured by
averaging 100 times, and all configurations not mentioned were set the same.

Table 5. Ablation study according to the LAV CE on Aff-wild

Methods
RMSE PCC CCC

(V) (A) (V) (A) (V) (A)

AVCE (AL) w/ LAV CE 0.154 0.154 0.713 0.632 0.682 0.594
AVCE (AL) w/o LAV CE 0.206 0.181 0.520 0.574 0.476 0.523

1 import cvxpy as cp

2 from cvx_utils import OptLayer

3

4 # SparseMax

5 z = cp.Variable (32)

6 x = cp.Parameter (32)

7

8 f = lambda z,x:cp.sum_squared(z - x)

9 g = lambda z,x:-z

10 h = lambda z,x:cp.sum(z) - 1

11 SP = OptLayer ([z],[x],f,[g],[h])

12

13 # SoftMax

14 w = cp.Variable (32)

15 y = cp.Parameter (32)

16

17 fs = lambda w,y:-w@y -cp.sum(cp.entr(w))

18 hs = lambda w,y:cp.sum(w) - 1

19 SM = OptLayer ([w],[y],fs ,[],[hs])

20

21 # Forward pass

22 feat = compressor(encoder(img))

23 sp_feat = SP(feat) # Aug. 1 (SparseMax)

24 sm_feat = SM(feat) # Aug. 2 (SoftMax)

Listing 1.1. Pytorch-style Pseudocode for Feature Transformations
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Fig. 3. Additional neural activation maps on high-dimensional AffectNet dataset.
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Fig. 4. Additional neural activation maps on AffectNet dataset (cont.).
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Fig. 5. Two-dimensional visualization result on AFEW-VA evaluation split.
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