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Abstract. Many methods have been proposed over the years to tackle
the task of facial 3D geometry and texture recovery from a single image.
Such methods often fail to provide high-fidelity texture without relying
on 3D facial scans during training. In contrast, the complementary task
of 3D facial generation has not received as much attention. As opposed to
the 2D texture domain, where GANs have proven to produce highly re-
alistic facial images, the more challenging 3D domain has not yet caught
up to the same levels of realism and diversity.
In this paper, we propose a novel unified pipeline for both tasks, genera-
tion of texture with coupled geometry, and reconstruction of high-fidelity
texture. Our texture model is learned, in an unsupervised fashion, from
natural images as opposed to scanned textures. To our knowledge, this
is the first such unified framework independent of scanned textures.
Our novel training pipeline incorporates a pre-trained 2D facial genera-
tor coupled with a deep feature manipulation methodology. By applying
our two-step geometry fitting process, we seamlessly integrate our mod-
eled textures into synthetically generated background images forming a
realistic composition of our textured model with background, hair, teeth,
and body. This enables us to apply transfer learning from the 2D image
domain, thus leveraging the high-quality results obtained in this domain.
We provide a comprehensive study on several recent methods comparing
our model in generation and reconstruction tasks. As the extensive qual-
itative, as well as quantitative analysis, demonstrate, we achieve state-
of-the-art results for both tasks.

* These authors contributed equally to this work
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1 Introduction

Generation of 3D facial geometry and full texture, as well as their reconstruction
from a single 2D image, are highly challenging and important tasks at the in-
tersection of computer vision, graphics, and machine learning. These tasks arise
within endless applications ranging from virtual reality to facial editing.

Our main motivation is that while 2D generation methods have been suc-
cessful, it is difficult to carefully control attributes such as expression, pose and
lighting within such image generators. At the other end, achieving similar re-
sults in the 3D domain is difficult due to lack of data and the requirement for
generating corresponding geometries for each texture map. Our goal is to en-
able such control while maintaining the convenience of training on 2D images.
In addition, we propose to construct a joint pipeline for both tasks for the sake
of resource conservation as well as model standardization for applications where
both generated and reconstructed faces are used.

At the heart of such generation and reconstruction methods lies a hidden
common assumption that natural facial geometries and textures reside on a
low-dimensional manifold. Following this assumption, the above tasks can be
carried out within this simpler representation space, instead of the original high-
dimensional space. The recovery of this manifold is termed facial modeling and
the mathematical bridge between the high and low dimensional representations
is termed a facial model. Many different types of facial models have been pro-
posed over the years, including linear, non-linear, deep learning-based, hybrid,
implicit, and dense landmark regression models, to name a few. While most
models are geared towards reconstruction tasks, only a few models are success-
ful at synthetically generating realistic samples due to the added complication
of sampling the facial manifold. In addition, regardless of the models used, the
facial generation process must account for the inter-dependency between geom-
etry and texture, thus, producing compatible geometry-texture pairs in order
to achieve realistic 3D facial generations. Ideally, when performed correctly, the
newly generated faces will reside on the combined geometry-texture manifold.

In previous efforts, training a generative model for facial geometry and tex-
ture depended either on (i) 3D facial scans, via supervised learning, that yielded
high-quality results, or (ii) on 2D facial images only, via unsupervised or semi-
supervised learning, which produced lower-quality results; see overview in Sec-
tion 2. Here we combine the best of both worlds, and provide an unsupervised
training pipeline, independent of a dataset of 3D facial scans, producing state-
of-the-art facial generation results. In addition to performing 3D facial texture
generation, which is our main contribution, the proposed model can also be
utilized for the task of full-texture recovery from a single 2D image for which
we also demonstrate results on par with fully supervised methods. The pro-
posed high-resolution model is achieved by incorporating a linear as well as a
direct regression facial model, a pre-trained 2D generative model, a deep feature
manipulation component, and a differentiable rendering layer, all integrated as
building blocks for a novel unsupervised training pipeline.
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2 Background and Related Efforts

Next, we review related efforts. Techniques incorporated in the proposed pipeline
are described in detail. Table 1 summarizes the fundamental differences between
our work and relevant prior works.

The 3D Morhpable Model (3DMM) [1] is arguably the most commonly
used model both when generating or reconstructing facial geometries and tex-
tures; see [9]. The 3DMM model is obtained by semantically aligning facial scans
to a template model comprised of n vertices and performing PCA [16] on the
geometry, texture and expression vectors. The obtained k principal components
for shape and expression Us,Ue ∈ R

3n×k and mean shape M ∈ R
3n comprise

the 3DMM geometry model. Given a set of shape and expression parameters
(ps,pe ∈ R

k), the facial geometry is constructed as S = M+Us · ps +Ue · pe.
Texture modeling and formation are produced per-vertex in a similar manner.
Many improvements were suggested, for example, [3,22,2], who improve the data
acquisition and registration processes. However, due to their linear nature, such
models usually produce unrealistic samples [35].

3DMM fitting. Given a 2D face image and the 3DMM geometry and ex-
pression basis, the goal of 3DMM fitting is to recover the 3DMM geometry and
expression coefficients as well as a 3D rigid transformation. Numerous approaches
have been suggested for tackling this problem, ranging from optimization-based
methods [1,12], to one-shot deep learning pipelines originated in [31,45], and
followed up in [39,14,7,15] to name a few. In this work, we utilize the model
introduced in [7], due to its high precision in estimating model parameters, as
well as the available code and pre-trained model; see Section 3.

Non-linear and hybrid model fitting. Recent efforts have built upon
classical 3DMMs, proposing both hybrid [32,38,33,35,36,12,4,34] and non-linear
models [42,44]. These deep network-based methods may also incorporate lin-
ear components. Some models are presented only in the context of monocular
geometry and texture recovery while others are also utilized for synthesis.

Dense landmark regression. In [20], a regression network is trained to
predict a dense collection of landmarks directly on a given facial 2D image.
These landmarks represent the projected vertex locations of a 3D canonical fa-
cial model. This method achieves better alignment relative to the target image
and is not constrained to the limitations of the linear model. However, the land-
mark based facial representation presents low-detail geometry due to the limited
number of recovered landmarks. We therefore propose a two-step fitting scheme
combining both landmark regression as well as 3DMM geometry reconstruction
in order to gain the benefits of both regimes; see details in Section 3.3.

Realistic 2D face generation. In a long line of efforts culminating in [17],
various models have been proposed for the task of 2D face image generation.
Such models are capable of generating highly realistic 2D facial images as well
as project real 2D facial images onto the model’s latent manifold. As we aim
to mitigate the need for 3D scans of facial textures, we heavily rely on well-
established 2D facial generative models as the basis for the proposed pipeline.
Throughout the proposed pipeline, we utilize the framework and pre-trained
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Fig. 1. Our training pipeline. A vector z ∈ R
512 of Gaussian random noise

is plugged into two identical mapping networks [19], producing two latent vectors
wtex,wbg ∈ R

18×512, respectively. The facial image obtained by feeding wbg into Style-

GAN is illustrated on the lower left. The vector wbg is plugged into a deep feature
manipulation network [37] called StyleRig to obtain the (manipulated) latent vector
ŵbg ∈ R

18×512 which encodes the same facial information as wbg (e.g . facial expression,
identity, lighting, etc.) but with a modified facial orientation. We then feed wtex and
ŵbg into our texture and pre-trained StyleGAN generators GT and Gbg, outputting a
texture image Itex and a 2D facial image Îbg respectively. Then, we apply a two-step
fitting approach to recover 3DMM parameters (p̂bg) [7] as well as a dense landmarks
mask (dlm) [20] that best fit Îbg; see Section 3.3. We then use p̂bg to render the texture
Itex into a 2D facial image Iface, and perform a masking operation according to the
face mask extracted from the dlm. The masked facial (foreground) image Iface and the
(background) image Îbg are then composed together to form Iout. Finally, Iout is fed
into a pre-trained discriminator which is further trained. Trainable and frozen models
are depicted in green and red respectively.

model weights provided by the seminal papers of Karras et al . [18,17], which are
regarded the golden standard for this task; see Section 3.

Manipulating facial properties via deep feature mapping. Most syn-
thesis methods described above, specifically [18], learn to map an input random
noise vector, through some latent representation, into a realistic 2D facial image.
Following this popular approach, a variety of papers have emerged which learn
to manipulate this latent vector to change some desired facial properties in the
output 2D image. Such manipulation can be either statistics-based [5] or, more
often, learning based [37]; see [40] with references therein.

As discussed in detail in Section 3, our pipeline makes use of a 2D facial image
generator to compensate for the lack of 3D facial scans. However, it is infeasible
to compensate for 3D geometry and full facial texture using only uncontrolled

randomly generated 2D facial images. We thus utilize a method providing control
over the pose of generated images and show that the controlled 2D images indeed
suffice for full-texture learning. To this end, we utilize the method of [37] for deep
feature manipulation; see Section 3.

Generation. While most prior efforts have focused on 3D reconstruction
from a 2D image, few methods have been proposed for the generation of random
but realistic facial models. In [25], a GAN-based approach was also proposed for
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improving facial recognition models via synthetic augmentation; however, their
pipeline focuses more on controlling model parameters intending to supplement
the training data. This, as opposed to the realistic generation of completely
random faces, leads to a less desirable outcome in terms of realism and res-
olution. Hence, the results are not visually pleasing; see Fig. 4. In [35,34,12],
3DMMs combined with generative models were used for either generation or
reconstruction of realistic textures. However, these methods rely on proprietary
high-quality facial scans during training, obtained by specialized facial scanners.
This makes these results difficult to reproduce. Moreover, such scanned data is
far less diverse than abundant facial 2D images in common datasets.

Reconstruction. Many methods have been previously suggested for 3D
face reconstruction from a given 2D image. In [31,32,33,8], a mapping from 2D
images to a 3D geometric representation is learned based on synthetic data.
In [12,13], real facial textures were utilized, to obtain, in a supervised manner,
a realistic reconstruction. However, acquiring such textures requires laborious
and expensive 3D scanning, hence, impractical to scale to large numbers. In
this paper, we provide an unsupervised alternative that requires only the freely
available geometric models, and does not directly require 3D scans, and achieves
either comparable or higher quality reconstructions. A pipeline for completion
of a facial texture containing large holes was suggested in [6], however, they
also rely on scanned textures as training data. A one-shot learning approach
was proposed in [11] which applies an iterative and slow optimization process to
complete a facial texture.

Two additional methods that do not rely on 3D scanned data were proposed
by Lin et al . and Kim et al . [21,23]. In Kim et al . [21] an unsupervised model
for partial texture completion is trained by combining a global and a local patch
discriminator to the full rendering as well as the uv mapped texture. The uv maps
in this work are of dimension 512× 512, a quarter of the resolution presented by
our maps. Lin et al . [23] takes a different approach to the completion task by
utilizing Graph Convolutional Networks. However, by not basing their pipelines
on a 2D image generator which can produce controlled 2D images (e.g . StyleGAN

combined with a model as [37]), their method is not intended for the task of
generation of expressive 3D models and does not account for the coupling of
geometry and texture. See detailed comparison with [21,23] in Section 4.

Method
Unsupervised

Training
High-Fidelity

Output
Supports
Generation

Supports
Reconstruction

Deng et al . [7] ✓ ✓

Lin et al . [23] ✓ ✓ ✓

Kim et al . [21] ✓ ✓ ✓

Deng et al . [6] ✓ ✓

Gecer et al . [12] ✓ ✓

Shamai et al . [35,34] ✓ ✓

Marriott et al . [25] ✓ ✓

Ours ✓ ✓ ✓ ✓

Table 1. Comparison to prior art.
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2.1 Our contribution

The main contributions of our method are the following:
(i) We provide the first unsupervised high-fidelity generation pipeline capa-

ble of producing realistic textures coupled with corresponding geometries; See
Table 1 and Section 3. This is achieved by a novel training pipeline which suc-
cessfully decouples intrinsic texture features related to the person’s identity, from
extrinsic properties such as pose and Lambertian illumination.

(ii) In addition to texture generation, we utilize the very same model for the
task of texture recovery from a single image, successfully reconstructing frontal
as well as peripheral facial details; see Section 3.2.

(iii) We present state-of-the-art results in both model generation as well
as full texture recovery. We support this claim via both qualitative as well as
quantitative results and comparisons; see Section 4. We prepared an additional
demonstration video with further results; see supplementary material.

(iv) Our results are fully reproducible as only freely available datasets and
models are required during training and inference. In addition, we provide all
our trained model weights for both generation and reconstruction tasks [26].

3 Unsupervised Learning of Facial Textures and

Geometries

In this section, we detail our unsupervised pipeline for generation and reconstruc-
tion of full facial textures and coupled geometries. While the proposed pipeline
generates and recovers both texture as well as corresponding geometry, we rely
on existing methods and models for geometric recovery and generation, and fo-
cus our attention mainly on high-quality texture modeling. We are guided by
the notion that the main effect on the perception of model realism stems from
high-resolution texture rather than highly detailed geometry. This idea was also
noted e.g . by [35]. Nevertheless, recovery of highly detailed geometry is still an
important research topic with many successful efforts such as [32,33,41,4].

An overview of the suggested training and inference pipelines is depicted in
Figs. 1 and 2 respectively. The proposed approach to unsupervised learning of
facial textures utilizes an adversarial loss to train a texture generator, GT , while
harnessing a pre-trained 2D facial image generator, Gbg, in the following fashion.
We start by generating, via Gbg, a 2D facial image which we term a background

image. We then fit a corresponding geometry to the background image using a
two-step geometry recovery process utilizing [7,20]; see Section 3.3. We proceed
to generate a facial texture Itex via our trainable texture generator GT . The
generated synthetic texture is stored as a 2D image coupled with a canonical
UV parametrization relating between image locations to the vertices of the 3D
facial model. We base our UV unwraping on Floater [10]. The model fitted to
the background image enables the seamless mapping of the synthetic texture
image Itex into the background image as depicted in Fig. 1.

The texture generator is trained within a GAN framework for which a dis-
criminator model is trained to differentiate between blended and real images
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Fig. 2. Our inference pipelines. During inference, we drop some components re-
lated to the training pipeline (see Fig. 1). (Left) Generation: As before, a single
latent vector z is used to generate wtex and wbg via two mapping networks. The latent
vector wbg is used to generate 3DMM geometry parameters pbg via the trained DFR
model while wtex is introduced to the trained texture generator yielding the corre-
sponding texture image Itex. The parameters pbg are used, along with our canonical
UV parametrization, to generate the 3DMM geometry which we render using Itex as
the mesh texture. (Right) Reconstruction: A given input image I is first plugged
into our two-step fitting model producing its 3DMM parameters p and a dense land-
mark mask dlm. A latent vector w containing our optimization parameters is then
inserted into our trained texture generator producing a texture image Itex. Using a
differentiable renderer, p and Itex are rendered into a 2D face image Iface, which is
blended with I according to the dlm to produce our output Iout. Finally, a VGG loss
similar to [17] is evaluated between I and Iout.

and thus continuously improves the generator quality. In order to generate high-
resolution facial textures from all viewing angles, it is crucial to control various
properties within the images generated byGbg. For example, we require that each
generated identity appears under a range of poses. We therefore utilize a deep
feature manipulation component, as in [37], that encodes the desired properties
within the input of Gbg. In addition, in order to disentangle between the albedo
and shading components of the texture, we estimate the Lambertian lighting
conditions in Gbg and apply them to our texture within the rendering process.
Section 3.2 further elaborates on these components.

Learning from 3D facial scans. Prior efforts approached the task of train-
ing facial texture models by relying on difficult-to-obtain 3D scans. For example,
in [35,12], high-resolution scans obtained by a 3DMD scanner are geometrically
aligned and mapped to a canonical 2D domain. The mapped textures are used as
training data for a GAN which is tasked to generate new and realistic ones. This
methodology suffers from two main drawbacks: (i) The 3D scans are not easily
obtained or freely distributed, thus posing a significant barrier in reproducing
such models. (ii) High-quality 3D scanners are expensive and cumbersome, lim-
iting the ability to collect data. Hence, even when available, such datasets are
comprised of at most a few thousand subjects, which can not encompass the
huge variety of human faces. We mitigate the above issues by eliminating the
dependency on scans and replacing them with widely available 2D facial im-
ages and freely distributed geometric models, thus, providing a more accessible
method and producing a more diverse texture model.

Replacing 3D facial scans with 2D facial images. Replacing 3D fa-
cial scans with prevalent 2D facial images is commonly achieved by utilizing
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a differentiable rendering layer. The rendering of 3D textured models into 2D
images enables the incorporation of 2D image-related architectures and losses.
This process also requires a 3D mesh, usually represented by a pair (V, Tri) of
vertex coordinates V ∈ R

Nv×3 and triangulation Tri ∈ R
Nf×3, as well as a uv

parametrization φ : {1, · · · , Nv} → [0, 1]× [0, 1] that maps every vertex to coor-
dinates on the canonical plane. To obtain the desired facial rendering Iface, the
vertex coordinates are first projected onto the 2D camera plane and the final
pixel colors are determined by a rasterization process mapping the facial texture
onto the projected mesh according to the predetermined UV parametrization.

Using this methodology, we can transform our training losses from the 3D
to the 2D domain. We can thus utilize the vast corpus of prior art regarding 2D
images, including pre-trained models as well as large, high resolution, and freely
available datasets; see Section 3.1.

Having established the above, the question remains how to obtain synthetic
facial renderings which are indistinguishable from real facial images, considering
that the rendered images lack hair, ears, inside of the mouth, background, etc.
Possible solutions include segmenting-out the background in the real image,
or adding a synthetic background to the rendered (synthetic) facial image. The
former can be achieved via image segmentation or 3D model fitting, both of which
produce sub-optimal results that are easily distinguishable from the synthetic
image, due to artifacts at the face boundary. We therefore choose the latter
option and propose to generate an additional 2D facial image Ibg, e.g . using
StyleGAN, and utilize Ibg as the background to our (foreground) rendered image
Iface. This is achieved by first fitting a geometric model to Ibg (see Section 3.3),
which serves as the 3D mesh required for rendering Itex into a 2D image Iface, as
previously detailed. This process embeds our synthetic facial texture image Itex
into Ibg, enforcing the facial texture to be generated in a way that realistically
blends with the surrounding parts in Ibg, like hair and ears; see Fig. 1.

3.1 Transfer learning

The process described above results in a 2D facial image, enabling the use of
standard 2D image losses. As common in generative models, we use an adver-
sarial loss to discriminate between real and fake images. Fortunately, many such
pre-trained GANs are available for the task of 2D facial image generation [17].
We base our mapping network, texture generator, and discriminator, on the ar-
chitecture proposed in StyleGAN 2 [19]. As facial textures are closely related to
2D facial images, we initialize the above models with the pre-trained StyleGAN 2
weights. This transfer learning approach has dramatically reduced our pipeline
training time and improves texture quality, as was also reported by [17].

3.2 Pose and illumination invariant textures

As detailed above, the proposed unsupervised approach relies on rendering 2D
images from the generated textures. However, this approach alone, has two in-
herent problem: (i) Since every input vector z corresponds to a facial image in
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a specific known pose, the generator can leverage this correlation and generate
high-resolution details only in the visible regions with no penalty on occluded
regions within the rendered 2D image. We propose to mitigate this issue by
introducing random facial rotations during training via deep feature manipula-

tion, as detailed below. (ii) Without properly addressing scene illumination, the
generator will incorporate the lighting effects into the generated textures; see
Fig. 5. We thus aim to decouple the albedo from the illumination effects, en-
abling post-relighting of the texture. To this end, we relight the models during
training using the lighting parameters recovered by [7], forcing the generator to
produce textures without baked-in lighting effects. Here, we assume a simplified
Lambertian lighting model and do not consider reflective effects.

Deep feature pose manipulation. In order to overcome the orientation-
decoupling problem, we manipulate the latent vector wbg, related to the back-
ground image Ibg enforcing the generation of faces in a variety of orientations.
This successfully decouples the pose from the input vector z, thus encouraging
our texture generator to produce full high resolution texture from all viewing
angles. We adopt the deep feature manipulation methodology proposed in [37].

The manipulation model, termed StyleRig, is comprised of two parts. A Dif-
ferentiable Face Reconstruction Network, or DFR model, which takes as input
the latent vector w and produces estimated 3DMM parameters p = DFR(w)
which include (ps,pe,pt, γ,R, t), shape, expression, texture and lighting, rota-
tion and translation parameters respectively. We train our model utilizing the
highly versatile 3DMM model generated by [3].

A second network termed StyleRig takes as input a latent vector w and a
set of parameters p and outputs a modified latent parameter vector ŵ, where
ideally the image I = Gbg(ŵ) portrays the face GStyleGan(w) produced by w but
modified to fit the parameters p. In order to produce a rotated version of Ibg we
first modify the rotation parameters of pbg := DFR(wbg) to derive p̂bg and then

apply ŵbg = StyleRig(p̂bg,wbg). The image Îbg = Gbg(ŵbg) contains a rotated
version of the same person as in Ibg. We then generate a texture image using the
latent vector wtex, regardless of the rotation angles which were modified in wbg.
This yields the desired pose-invariance within the texture generator; see Fig. 1

The same DFR model used above will later also be utilized during infer-
ence in order to recover corresponding geometries for our generated textures;
see Section 3.3 and Fig. 2. This allows us to efficiently generate corresponding
geometries directly from latent vectors without requiring the trained StyleGAN

generator during inference.

Training for re-illumination. To generate textures without Lambertian
illumination effects, we first estimate the background scene lighting and relight
the texture during training. Assuming a simplified Lambertian reflectance model,
we estimate the parameters γ ∈ R

3×9 from Ibg, as coefficients of 9 Spherical
Harmonics (SH) basis functions [28,29] for R,G and B illumination bands, and
relight the rendered image Iface under the recovered illumination. The coeffi-
cients γ with the computed vertex normals {ni} and SH functions Φ produce

the per-vertex lighting value C(ni|γ)l =
�

9

b=1
γl,bΦb(ni). We perform two ren-
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dering passes, one for the illumination component and another for the albedo.
The final illuminated rendering is obtained by pixelwise multiplication of the
two rendering results.

Iface = R(S(ps, pe), GT (wtex)) · R(S(ps, pe),C(ni|γ)),

where R(G, T ) signifies the rendering operator applied to a geometry G and a
texture T , ps,pe are respectively shape and expression parameters recovered
from Ibg, and wtex is the input latent vector for the texture generator.

This process results in the texture generator producing textures with no
baked-in Lambertian lighting effects, so that the re-illuminated texture via γ

would match the lighting present in Ibg and seem realistic to the discriminator.

3.3 Recovering corresponding geometry via two-step fitting

In order to facilitate the realistic incorporation of foreground rendering and
background image we propose a two step geometry fitting approach. We observed
that, in general, geometry reconstruction methods tend to exhibit a trade-off be-
tween geometry realism and precise image alignment. For example, while 3DMM
based fitting methods produce high-resolution facial meshes, the mesh alignment
relative to the target image is imperfect. In contrast, landmark regression based
methodologies are precisely aligned to the target facial image but produce a very
sparse geometry reconstruction based on the landmark arrangement. To achieve
a realistic blending between the foreground rendering Iface and synthetic back-
ground image Ibg, both accuracy as well as high-resolution geometry are crucial.

To this end, we propose a two step fitting scheme comprising of the 3DMM
recovery proposed by [7] followed by a dense landmark regression model [20],
gaining the benefits of both. This is achieved by extracting the geometry pa-
rameters p̂bg from the former while utilizing the boundary mask dlm from the
latter. While [7] provides a good high-resolution fitting which can be realistically
rendered, we use the dense landmark mask (dlm) from [20] in order to perform
foreground blending with high precision. By adopting the two-step approach
we harness the strengths from both fitting techniques enabling us to perform
accurate and realistic blending. In Section 4.3 we provide an ablation study
comparing the naive one-step 3DMM-only approach to our proposed two-step
fitting approach. Indeed we observe that the two-step approach helps mitigate
unwanted misalignment artifacts, especially in the mouth region.

3.4 Unsupervised training

The proposed pipeline above generates full facial textures along with correspond-
ing geometries, and, using a differentiable renderer, synthesizes a 2D facial image.
Adhearing to the GAN framework, the composed facial image along with a real
2D facial image are fed into a discriminator network tasked to differentiate be-
tween the real and the fake samples. Such 2D real images are widespread and
can be taken from any dataset of facial images, for example, [18].
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Chen et.al Deng et.al Gecer et.al Genova et.alLin et.alInput Ours Kim et.al

Fig. 3. Qualitative Reconstruction Comparison Results: We present texture
reconstruction results on the MOFA test-set [39] compared to previous methods by
[23,21,4,7,12,14], respectively. This figure is best viewed when zoomed in.

4 Experimental results

We compare the proposed approach to several state-of-the-art 3D generation
and texture reconstruction methods. We provide quantitative and qualitative
evidence that our model performance is on par with and often outperforms
previous methods, both supervised and unsupervised by scanned textures (see
Table 1), in terms of texture reconstruction quality, realism, and details. Our
supplementary material contains additional reconstruction results for extreme
side views, as well as a demonstration video presenting more viewing angles for
our output results. Our code and pre-trained models are available 3.

Implementation details. We implemented our pipeline in Python using
Pytorch [27] and Pytorch3D [30], and trained it on 4 RTX 3090 GPUs on the
FFHQ dataset [18] consisting of 70k facial images. We initialized our models

3 Link for our open-source code on Github: https://github.com/ronslos/Unsupervised-
High-Fidelity-Facial-Texture-Generation-and-Reconstruction

https://github.com/ronslos/Unsupervised-High-Fidelity-Facial-Texture-Generation-and-Reconstruction
https://github.com/ronslos/Unsupervised-High-Fidelity-Facial-Texture-Generation-and-Reconstruction
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Fig. 4. Facial Synthesis: We visually compare our output textures and rendered
textured geometries to: Shamai et al . [34] and Mariott et al . [25]. Our high resolution
textures provide highly realistic faces spanning a wide variety of ages, ethnicity and
appearance. The leftmost column provides a zoomed-in crop, highlighting the high
resolution details. The proposed method presents finer details and realism as compared
to both previous methods, even though [34] is supervised by scanned textures.

from the pre-trained weights of StyleGAN [19], using default parameters and
losses, we train for 3 epochs; see Section 3.1. The 2D images as well as the
generated textures are of size 1024× 1024.

4.1 Face generation

We randomly generated textures and corresponding geometries via the proposed
inference pipeline; see Section 3 and Fig. 2. We present the texture images with
zoomed-in areas to highlight the high level of detail and realism. We compare
our results to the supervised model of [34] and the unsupervised model from [25];
see Fig. 4. See supplementary material for additional results.

4.2 Facial texture reconstruction

Fig. 3 presents a qualitative comparison between our texture reconstruction
pipeline from Fig. 2 to several state-of-the-art prior works [23,4,7,12,14]. The
comparison demonstrates that our model can reproduce challenging textures e.g .
difficult lighting conditions, makeup, and extreme expressions and compares fa-
vorably to previous approaches, including methods based on supervised training
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Metric [7] [23] [6] Ours

L1 distance ↓ 0.052 0.034 / 0.0244
PSNR ↑ 26.58 29.69 22.9∼26.5 32.889
SSIM ↑ 0.826 0.894 0.887∼0.898 0.972

LightCNN [43] ↑ 0.724 0.900 / 0.96

Table 2. Quantitative Evaluation: We evaluate reprojected reconstruction similar-
ity on the CelebA[24] test-set, containing nearly 20k images.

from 3D scans. Note, that we utilize [7] for geometry recovery and thus focus our
comparison on texture recovery only; see Section 3. Additional reconstruction
results produced from high-resolution images are depicted in Fig. 1 and the sup-
plementary material, which also presents reconstructions from side views. The
results demonstrate that our model is capable of high-resolution texture recov-
ery when presented with high-quality input images. We note that our proposed
texture recovery method consists of a weight regularization term balancing be-
tween texture fidelity and realism. This is set manually to a constant desirable
value throughout all our experiments. See supplementary for details alongside
additional results obtained for varying regularization values.

4.3 Ablation study

In Fig. 5 we present an ablation study, where the full proposed model is shown to
produce more realistic results compared to its variants with missing components.
Additional ablation results are placed in the supplementary material. This sug-
gests that each of our pipeline components is crucial for producing satisfactory
output results. We show that: (i) model rotations during training are crucial for
generating high details on the peripheral areas of the texture; see Section 3.2,
(ii) the two-step fitting eliminates the unwanted teeth artifacts; see Section 3.3,
and (iii) model illumination during training successfully disentangles albedo from
Lambertian shading effects, producing models that can be realistically integrated
into scenes with varying lighting conditions; see Section 3.2.

Training stability. The ablation study depicts three different training pipelines
with parts of the original pipeline missing. However, the model still converges
very similarly, maintains identities and only differs by the manner expected by
the removal of each block. This demonstrated that our training is robust to
modification of the pipeline.

4.4 Quantitative results

Table 2 presents a quantitative study for the task of texture reconstruction, using
the CelebA [24] test-set. Our method achieves better scores in all tested metrics
compared to previous state-of-the-art methods [7,23,6]. In contrast to [23], we
do not omit problematic areas by semantically masking difficult regions.
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Full Model W/O lightingW/O Rotation W/O Two-step Fitting

Fig. 5. Ablation Study. Left to right: (i) full model, (ii) without applying our deep
feature manipulation component (see Section 3.2), (ii) without the two-step fitting, i.e.
using only the 3DMM during the geometry fitting process, without the facial masking
step (see Section 3.3), and (iii) without relighting the model (see Section 3.2). This
leads to poor details in the texture periphery, unwanted teeth artifact, and baked-in
Lambertian lighting effects, respectively; see Section 4.3.

5 Discussion, Limitations, and Future Work

We introduced a novel unsupervised pipeline for generation as well as recon-
struction of high resolution realistic facial textures. Our pipeline matches the
geometry and texture via a single unified random input vector z, and combines
common pre-existing building blocks, in a non-trivial manner, with new novel
ideas, to achieve SOTA resuls. Those ideas include the incorporation of a back-
ground image during training, the decoupling of pose from texture by feature
vector manipulation, the ability to generate coupled geometry and texture at
inference directly from random features, and our two-step fitting approach.

Our experiments demonstrate that we surpass prior art in realism and quality,
in both tasks, including models supervised by scanned facial textures.

Due to the presence of subjects wearing glasses within the FFHQ dataset used
for training, in some cases, our output texture might contain glasses; See supple-
mentary material. This can be mitigated in future work by using latent feature
manipulation.In addition, while Lambertian lighting is disentangled within our
pipeline, we do not tackle the challenging problem of specular disentanglement.
Moreover, we noticed that during reconstruction, on occasion, the eye color is not
consistent with the input image. In future work it is possible to explore regional
weighting of the reconstruction loss in order to better control reconstruction
trade-offs. Lastly, we did not utilize non-linear geometric representations as we
note that high-resolution texture is the most crucial component in the quest for
realistic facial generation.
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